Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

Overview

AMRBART

An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv).

PWC

PWC

PWC

PWC

Requirements

  • python 3.8
  • pytorch 1.8
  • transformers 4.8.2
  • pytorch-lightning 1.5.0
  • Tesla V100 or A100

We recommend to use conda to manage virtual environments:

conda env update --name <env> --file requirements.yml

We also provide a docker image here.

Data Processing

You may download the AMR corpora at LDC.

We follow Spring to preprocess AMR graphs:

# 1. install spring 
cd spring && pip install -e .
# 2. processing data
bash run-preprocess.sh

Pre-training

bash run-posttrain-bart-textinf-joint-denoising-6task-large-unified-V100.sh /path/to/BART/

Fine-tuning

For AMR Parsing, run

bash finetune_AMRbart_amrparsing.sh /path/to/pre-trained/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash finetune_AMRbart_amr2text.sh /path/to/pre-trained/AMRBART/ gpu_id

Evaluation

For AMR Parsing, run

bash eval_AMRbart_amrparsing.sh /path/to/fine-tuned/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash eval_AMRbart_amr2text.sh /path/to/fine-tuned/AMRBART/ gpu_id

Inference on your own data

If you want to run our code on your own data, try to transform your data into the format here, then run

For AMR Parsing, run

bash inference_amr.sh /path/to/fine-tuned/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash inference_text.sh /path/to/fine-tuned/AMRBART/ gpu_id

Pre-trained Models

Pre-trained AMRBART

Setting Params checkpoint
AMRBART-base 142M model
AMRBART-large 409M model

Fine-tuned models on AMR-to-Text Generation

Setting BLEU(tok) BLEU(detok) checkpoint output
AMRBART-large (AMR2.0) 49.8 45.7 model output
AMRBART-large (AMR3.0) 49.2 45.0 model output

To get the tokenized bleu score, you need to use the scorer we provide here. We use this script in order to ensure comparability with previous approaches.

Fine-tuned models on AMR Parsing

Setting Smatch checkpoint output
AMRBART-large (AMR2.0) 85.4 model output
AMRBART-large (AMR3.0) 84.2 model output

Todo

  • clean code

References

@inproceedings{bai-etal-2022-graph,
    title = "Graph Pre-training for {AMR} Parsing and Generation",
    author = "Bai, Xuefeng  and
      Chen, Yulong and
      Zhang, Yue",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "todo",
    doi = "todo",
    pages = "todo"
}
Owner
xfbai
Actions speak louder than words
xfbai
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022