Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Overview

Introduction

This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Overview

Abstract: Current adversarial attack research reveals the vulnerability of learning-based classifiers against carefully crafted perturbations. However, most existing attack methods have inherent limitations in cross-dataset generalization as they rely on a classification layer with a closed set of categories. Furthermore, the perturbations generated by these methods may appear in regions easily perceptible to the human visual system (HVS). To circumvent the former problem, we propose a novel algorithm that attacks semantic similarity on feature representations. In this way, we are able to fool classifiers without limiting attacks to a specific dataset. For imperceptibility, we introduce the low-frequency constraint to limit perturbations within high-frequency components, ensuring perceptual similarity between adversarial examples and originals. Extensive experiments on three datasets(CIFAR-10, CIFAR-100, and ImageNet-1K) and three public online platforms indicate that our attack can yield misleading and transferable adversarial examples across architectures and datasets. Additionally, visualization results and quantitative performance (in terms of four different metrics) show that the proposed algorithm generates more imperceptible perturbations than the state-of-the-art methods. Our code will be publicly available.

Requirements

  • python ==3.6
  • torch == 1.7.0
  • torchvision >= 0.7
  • numpy == 1.19.2
  • Pillow == 8.0.1
  • pywt

Required Dataset

  1. The data structure of Cifar10, Cifar100, ImageNet or any other datasets look like below. Please modify the dataloader at SSAH-Adversarial-master/main.py/ accordingly for your dataset structure.
/dataset/
├── Cifar10
│   │   ├── cifar-10-python.tar.gz
├── Cifar-100-python
│   │   ├── cifar-100-python.tar.gz
├── imagenet
│   ├── val
│   │   ├── n02328150

Experiments

We trained a resnet20 model with 92.6% accuracy with CIFAR1010 and a resnet20 model with 69.63% accuracy with CIFAR100. If you want to have a test, you can download our pre-trained models with the Google Drivers. If you want to use our algorithm to attack your own trained model, you can always replace our models in the file checkpoints.

(1)Attack the Models Trained on Cifar10

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/cifar10-r20.sh

(2)Attack the Models Trained on Cifar100

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/cifar100-r20.sh

(2)Attack the Models Trained on Imagenet_val

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/Imagenet_val-r50.sh

Examples

example

Results on CIFAR10 Here we offer some experiment results. You can get more results in our paper.

Name Knowledge ASR(%) L2 Linf FID LF Paper
BIM White Box 100.0 0.85 0.03 14.85 0.25 ICLR2017
PGD White Box 100.0 1.28 0.03 27.86 0.34 arxiv link
MIM White Box 100.0 1.90 0.03 26.00 0.48 CVPR2018
AutoAttack White Box 100.0 1.91 0.03 34.93 0.61 ICML2020
AdvDrop White Box 99.92 0.90 0.07 16.34 0.34 ICCV2021
C&W White Box 100.0 0.39 0.06 8.23 0.11 IEEE SSP2017
PerC-AL White Box 98.29 0.86 0.18 9.58 0.15 CVPR2020
SSA White Box 99.96 0.29 0.02 5.73 0.07 CVPR2022
SSAH White Box 99.94 0.26 0.02 5.03 0.03 CVPR2022

Citation

if the code or method help you in the research, please cite the following paper:

@article{luo2022frequency,
  title={Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity},
  author={Luo, Cheng and Lin, Qinliang and Xie, Weicheng and Wu, Bizhu and Xie, Jinheng and Shen, Linlin},
  journal={arXiv preprint arXiv:2203.05151},
  year={2022}
}
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022