Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Overview

Introduction

This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Overview

Abstract: Current adversarial attack research reveals the vulnerability of learning-based classifiers against carefully crafted perturbations. However, most existing attack methods have inherent limitations in cross-dataset generalization as they rely on a classification layer with a closed set of categories. Furthermore, the perturbations generated by these methods may appear in regions easily perceptible to the human visual system (HVS). To circumvent the former problem, we propose a novel algorithm that attacks semantic similarity on feature representations. In this way, we are able to fool classifiers without limiting attacks to a specific dataset. For imperceptibility, we introduce the low-frequency constraint to limit perturbations within high-frequency components, ensuring perceptual similarity between adversarial examples and originals. Extensive experiments on three datasets(CIFAR-10, CIFAR-100, and ImageNet-1K) and three public online platforms indicate that our attack can yield misleading and transferable adversarial examples across architectures and datasets. Additionally, visualization results and quantitative performance (in terms of four different metrics) show that the proposed algorithm generates more imperceptible perturbations than the state-of-the-art methods. Our code will be publicly available.

Requirements

  • python ==3.6
  • torch == 1.7.0
  • torchvision >= 0.7
  • numpy == 1.19.2
  • Pillow == 8.0.1
  • pywt

Required Dataset

  1. The data structure of Cifar10, Cifar100, ImageNet or any other datasets look like below. Please modify the dataloader at SSAH-Adversarial-master/main.py/ accordingly for your dataset structure.
/dataset/
├── Cifar10
│   │   ├── cifar-10-python.tar.gz
├── Cifar-100-python
│   │   ├── cifar-100-python.tar.gz
├── imagenet
│   ├── val
│   │   ├── n02328150

Experiments

We trained a resnet20 model with 92.6% accuracy with CIFAR1010 and a resnet20 model with 69.63% accuracy with CIFAR100. If you want to have a test, you can download our pre-trained models with the Google Drivers. If you want to use our algorithm to attack your own trained model, you can always replace our models in the file checkpoints.

(1)Attack the Models Trained on Cifar10

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/cifar10-r20.sh

(2)Attack the Models Trained on Cifar100

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/cifar100-r20.sh

(2)Attack the Models Trained on Imagenet_val

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/Imagenet_val-r50.sh

Examples

example

Results on CIFAR10 Here we offer some experiment results. You can get more results in our paper.

Name Knowledge ASR(%) L2 Linf FID LF Paper
BIM White Box 100.0 0.85 0.03 14.85 0.25 ICLR2017
PGD White Box 100.0 1.28 0.03 27.86 0.34 arxiv link
MIM White Box 100.0 1.90 0.03 26.00 0.48 CVPR2018
AutoAttack White Box 100.0 1.91 0.03 34.93 0.61 ICML2020
AdvDrop White Box 99.92 0.90 0.07 16.34 0.34 ICCV2021
C&W White Box 100.0 0.39 0.06 8.23 0.11 IEEE SSP2017
PerC-AL White Box 98.29 0.86 0.18 9.58 0.15 CVPR2020
SSA White Box 99.96 0.29 0.02 5.73 0.07 CVPR2022
SSAH White Box 99.94 0.26 0.02 5.03 0.03 CVPR2022

Citation

if the code or method help you in the research, please cite the following paper:

@article{luo2022frequency,
  title={Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity},
  author={Luo, Cheng and Lin, Qinliang and Xie, Weicheng and Wu, Bizhu and Xie, Jinheng and Shen, Linlin},
  journal={arXiv preprint arXiv:2203.05151},
  year={2022}
}
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022