Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

Overview

BoxeR

By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek.

This repository is an official implementation of the paper BoxeR: Box-Attention for 2D and 3D Transformers.

Introduction

TL; DR. BoxeR is a Transformer-based network for end-to-end 2D object detection and instance segmentation, along with 3D object detection. The core of the network is Box-Attention which predicts regions of interest to attend by learning the transformation (translation, scaling, and rotation) from reference windows, yielding competitive performance on several vision tasks.

BoxeR

BoxeR

Abstract. In this paper, we propose a simple attention mechanism, we call box-attention. It enables spatial interaction between grid features, as sampled from boxes of interest, and improves the learning capability of transformers for several vision tasks. Specifically, we present BoxeR, short for Box Transformer, which attends to a set of boxes by predicting their transformation from a reference window on an input feature map. The BoxeR computes attention weights on these boxes by considering its grid structure. Notably, BoxeR-2D naturally reasons about box information within its attention module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D is capable of generating discriminative information from a bird's-eye view plane for 3D end-to-end object detection. Our experiments demonstrate that the proposed BoxeR-2D achieves state-of-the-art results on COCO detection and instance segmentation. Besides, BoxeR-3D improves over the end-to-end 3D object detection baseline and already obtains a compelling performance for the vehicle category of Waymo Open, without any class-specific optimization.

License

This project is released under the MIT License.

Citing BoxeR

If you find BoxeR useful in your research, please consider citing:

@article{nguyen2021boxer,
  title={BoxeR: Box-Attention for 2D and 3D Transformers},
  author={Duy{-}Kien Nguyen and Jihong Ju and Olaf Booij and Martin R. Oswald and Cees G. M. Snoek},
  journal={arXiv preprint arXiv:2111.13087},
  year={2021}
}

Main Results

COCO Instance Segmentation Baselines with BoxeR-2D

Name param
(M)
infer
time
(fps)
box
AP
box
AP-S
box
AP-M
box
AP-L
segm
AP
segm
AP-S
segm
AP-M
segm
AP-L
BoxeR-R50-3x 40.1 12.5 50.3 33.4 53.3 64.4 42.9 22.8 46.1 61.7
BoxeR-R101-3x 59.0 10.0 50.7 33.4 53.8 65.7 43.3 23.5 46.4 62.5
BoxeR-R101-5x 59.0 10.0 51.9 34.2 55.8 67.1 44.3 24.7 48.0 63.8

Installation

Requirements

  • Linux, CUDA>=11, GCC>=5.4

  • Python>=3.8

    We recommend you to use Anaconda to create a conda environment:

    conda create -n boxer python=3.8

    Then, activate the environment:

    conda activate boxer
  • PyTorch>=1.10.1, torchvision>=0.11.2 (following instructions here)

    For example, you could install pytorch and torchvision as following:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other requirements & Compilation

    python -m pip install -e BoxeR

    You can test the CUDA operators (box and instance attention) by running

    python tests/box_attn_test.py
    python tests/instance_attn_test.py

Usage

Dataset preparation

The datasets are assumed to exist in a directory specified by the environment variable $E2E_DATASETS. If the environment variable is not specified, it will be set to be .data. Under this directory, detectron2 will look for datasets in the structure described below.

$E2E_DATASETS/
├── coco/
└── waymo/

For COCO Detection and Instance Segmentation, please download COCO 2017 dataset and organize them as following:

$E2E_DATASETS/
└── coco/
	├── annotation/
		├── instances_train2017.json
		├── instances_val2017.json
		└── image_info_test-dev2017.json
	├── image/
		├── train2017/
		├── val2017/
		└── test2017/
	└── vocabs/
		└── coco_categories.txt - the mapping from coco categories to indices.

The coco_categories.txt can be downloaded here.

For Waymo Detection, please download Waymo Open dataset and organize them as following:

$E2E_DATASETS/
└── waymo/
	├── infos/
		├── dbinfos_train_1sweeps_withvelo.pkl
		├── infos_train_01sweeps_filter_zero_gt.pkl
		└── infos_val_01sweeps_filter_zero_gt.pkl
	└── lidars/
		├── gt_database_1sweeps_withvelo/
			├── CYCLIST/
			├── VEHICLE/
			└── PEDESTRIAN/
		├── train/
			├── annos/
			└── lidars/
		└── val/
			├── annos/
			└── lidars/

You can generate data files for our training and evaluation from raw data by running create_gt_database.py and create_imdb in tools/preprocess.

Training

Our script is able to automatically detect the number of available gpus on a single node. It works best with Slurm system when it can auto-detect the number of available gpus along with nodes. The command for training BoxeR is simple as following:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE}

For example,

  • COCO Detection
python tools/run.py --config e2edet/config/COCO-Detection/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • COCO Instance Segmentation
python tools/run.py --config e2edet/config/COCO-InstanceSegmentation/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • Waymo Detection,
python tools/run.py --config e2edet/config/Waymo-Detection/boxer3d_pointpillar.yaml --model boxer3d --task detection3d

Some tips to speed-up training

  • If your file system is slow to read images but your memory is huge, you may consider enabling 'cache_mode' option to load whole dataset into memory at the beginning of training:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} dataset_config.${TASK_TYPE}.cache_mode=True
  • If your GPU memory does not fit the batch size, you may consider to use 'iter_per_update' to perform gradient accumulation:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.iter_per_update=2
  • Our code also supports mixed precision training. It is recommended to use when you GPUs architecture can perform fast FP16 operations:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.use_fp16=(float16 or bfloat16)

Evaluation

You can get the config file and pretrained model of BoxeR, then run following command to evaluate it on COCO 2017 validation/test set:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.run_type=(val or test or val_test)

For Waymo evaluation, you need to additionally run the script e2edet/evaluate/waymo_eval.py from the root folder to get the final result.

Analysis and Visualization

You can get the statistics of BoxeR (fps, flops, # parameters) by running tools/analyze.py from the root folder.

python tools/analyze.py --config-path save/COCO-InstanceSegmentation/boxer2d_R_101_3x.yaml --model-path save/COCO-InstanceSegmentation/boxer2d_final.pth --tasks speed flop parameter

The notebook for BoxeR-2D visualization is provided in tools/visualization/BoxeR_2d_segmentation.ipynb.

Owner
Nguyen Duy Kien
Learn things deeply
Nguyen Duy Kien
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021