A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

Related tags

Deep Learninguninas
Overview

UniNAS

A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

under development

(which happens mostly on our internal GitLab, we push only every once in a while to Github)

  • APIs may change
  • argparse arguments may be moved to more fitting classes
  • there may be incomplete or not-yet-working pieces of code
  • ...

Features

  • modular and therefore reusable
    • data set loading,
    • network building code and topologies,
    • methods to train architecture weights,
    • sets of operations (primitives),
    • weight initializers,
    • metrics,
    • ... and more
  • everything is configurable from the command line and/or config files
    • improved reproducibility, since detailed run configurations are saved and logged
    • powerful search network descriptions enable e.g. highly customizable weight sharing settings
    • the underlying argparse mechanism enables using a GUI for configurations
  • compare results of different methods in the same environment
  • import and export detailed network descriptions
  • integrate new methods and more with fairly little effort
  • NAS-Benchmark integration
    • NAS-Bench 201
  • ... and more

Where is this code from?

Except for a few pieces, the code is entirely self-written. However, sometimes the (official) code is useful to learn from or clear up some details, and other frameworks can be used for their nice features.

Other meta-NAS frameworks

  • Deep Architect
    • highly customizable search spaces, hyperparameters, ...
    • the searchers (SMBO, MCTS, ...) focus on fully training (many) models and are not differentiable
  • D-X-Y NAS-Projects
  • Auto-PyTorch
    • stronger focus on model selection than optimizing one architecture
  • Vega
  • NNI

Repository notes

Dynamic argparse tree

Everything is an argument. Learning rate? Argument. Scheduler? Argument. The exact topology of a Network, including how many of each cell and whether they share their architecture weights? Also arguments.

This is enabled by the idea that each used class (method, network, cells, regularizers, ...) can add arguments to argparse, including which further classes are required (e.g. a method needs a network, which needs a stem).

It starts with the Main class adding a Task (cls_task), which itself adds all required components (cls_*).

To see all available (meta) arguments, run Main.list_all_arguments() in uninas/main.py

Graphical user interface

Since putting together the arguments correctly is not trivial (and requires some familiarity with the code base), an easier approach is using a GUI.

Have a look at uninas/gui/tk_gui/main.py, a tkinter GUI frontend.

The GUI can automatically filter usable classes, display available arguments, and display tooltips; based only on the implemented argparse (meta) arguments in the respective classes.

Some meta arguments take a single class name:

e.g: cls_task, cls_trainer, cls_data, cls_criterion, cls_method

The chosen classes define their own arguments, e.g.:

  • cls_trainer="SimpleTrainer"
  • SimpleTrainer.max_epochs=100
  • SimpleTrainer.test_last=10

Their names are also available as wildcards, automatically using their respectively set class name:

  • cls_trainer="SimpleTrainer"
  • {cls_trainer}.max_epochs --> SimpleTrainer.max_epochs
  • {cls_trainer}.test_last --> SimpleTrainer.test_last

Some meta arguments take a comma-separated list of class names:

e.g. cls_metrics, cls_initializers, cls_regularizers, cls_optimizers, cls_schedulers

The chosen classes also define their own arguments, but always include an index, e.g.:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • DropOutRegularizer#0.prob=0.5
  • DropPathRegularizer#1.max_prob=0.3
  • DropPathRegularizer#1.drop_id_paths=false

And they are also available as indexed wildcards:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • {cls_regularizers#0}.prob --> DropOutRegularizer#0.prob
  • {cls_regularizers#1}.max_prob --> DropPathRegularizer#1.max_prob
  • {cls_regularizers#1}.drop_id_paths --> DropPathRegularizer#1.drop_id_paths

Register

UniNAS makes heavy use of a registering mechanism (via decorators in uninas/register.py). Classes of the same type (e.g. optimizers, networks, ...) will register in one RegisterDict.

Registered classes can be accessed via their name in the Register, no matter of their actual location in the code. This enables e.g. saving network topologies as nested dictionaries, no matter how complicated they are, since the class names are enough to find the classes in the code. (It also grants a certain amount of refactoring-freedom.)

Exporting networks

(Trained) Networks can easily be used by other PyTorch frameworks/scripts, see verify.py for an easy example.

Citation

The framework

we will possibly create a whitepaper at some point

@misc{kl2020uninas,
  author = {Kevin Alexander Laube},
  title = {UniNAS},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/cogsys-tuebingen/uninas}}
}

Inter-choice dependent super-network weights

  1. Train super-networks, e.g. via experiments/demo/inter_choice_weights/icw1_train_supernet_nats.py
    • you will need Cifar10, but can also easily use fake data or download it
    • to generate SubImageNet see uninas/utils/generate/data/subImageNet
  2. Evaluate the super-network, e.g. via experiments/demo/inter_choice_weights/icw2_eval_supernet.py
  3. View the evaluation results in the save dir, in TensorBoard or plotted directly
@article{laube2021interchoice,
  title={Inter-choice dependent super-network weights},
  author={Kevin Alexander Laube, Andreas Zell},
  journal={arXiv preprint arXiv:2104.11522},
  year={2021}
}
Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022