NALSM: Neuron-Astrocyte Liquid State Machine

Related tags

Deep LearningNALSM
Overview

NALSM: Neuron-Astrocyte Liquid State Machine

This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that introduces astrocyte-modulated STDP to the Liquid State Machine learning framework for improved accuracy performance and minimal tuning.

The paper has been accepted at NeurIPS 2021, available here.

Citation

Vladimir A. Ivanov and Konstantinos P. Michmizos. "Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity." 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

@inproceedings{ivanov_2021,
author = {Ivanov, Vladimir A. and Michmizos, Konstantinos P.},
title = {Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity},
year = {2021},
pages={1--10},
booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)}
}

Software Installation

  • Python 3.6.9
  • Tensorflow 2.1 (with CUDA 11.2 using tensorflow.compat.v1)
  • Numpy
  • Multiprocessing

Usage

This code performs the following functions:

  1. Generate the 3D network
  2. Train NALSM
  3. Evaluate trained model accuracy
  4. Evaluate trained model branching factor
  5. Evaluate model kernel quality

Instructions for obtaining/setting up datasets can be accessed here.

Overview of all files can be accessed here.

1. Generate 3D Network

To generate the 3D network, enter the following command:

python generate_spatial_network.py

This will prompt for following inputs:

  • WHICH_DATASET_TO_GENERATE_NETWORK_FOR? [TYPE M FOR MNIST/ N FOR NMNIST] : enter M to make a network with an input layer sized for MNIST/Fashion-MNIST or N for N-MNIST.
  • NETWORK_NUMBER_TO_CREATE? [int] : enter an integer to label the network.
  • SIZE_OF_LIQUID_DIMENSION_1? [int] : enter an integer representing the number of neurons to be in dimension 1 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_2? [int] : enter an integer representing the number of neurons to be in dimension 2 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_3? [int] : enter an integer representing the number of neurons to be in dimension 3 of liquid.

The run file will generate the network and associated log file containing data about the liquid (i.e. connection densities) in sub-directory

/ /networks/ .

2. Train NALSM

2.1 MNIST

To train NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST.py

This will prompt for the following inputs:

  • GPU? : enter an integer specifying the gpu to use for training.
  • VERSION? [int] : enter an integer to label the training simulation.
  • NET_NUM_VAR? [int] : enter the number of the network created in Section 1.
  • BATCH_SIZE? [int] : specify the number of samples to train at same time (batch), for liquids with 1000 neurons, batch size of 250 will work on a 12gb gpu. For larger liquids(8000), smaller batch sizes of 50 should work.
  • BATCHS_PER_BLOCK? [int] : specify number of batchs to keep in memory for training output layer, we found 2500 samples works well in terms of speed and memory (so for batch size of 250, this should be set to 10 (10 x 250 = 2500), for batch size 50 set this to 50 (50 x 50 = 2500).
  • ASTRO_W_SCALING? [float] : specify the astrocyte weight detailed in equation 7 of paper. We used 0.015 for all 1000 neuron liquids, and 0.0075 for 8000 neuron liquids. Generally accuracy peaks with a value around 0.01 (See Appendix).

This will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

2.2 N-MNIST

To train NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

2.3 Fashion-MNIST

To train NALSM model on Fashion-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_F_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

Instructions for training other benchmarked LSM models can be accessed here.

3. Evaluate Trained Model Accuracy

To get accuracy of a trained model, enter the following command:

python get_test_accuracy.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model

This will find the epoch with maximum validation accuracy and return the test accuracy for that epoch.

4. Evaluate Model Branching Factor

To compute the branching factor of a trained model, enter the following command:

python compute_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The trained model directory must have atleast one .spikes file, which contains millisecond spike data of each neuron for 20 arbitrarily selected input samples in a batch. The run file will generate a .bf file with same name as the .spikes file.

To read the generated .bf file, enter the following command:

python get_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The run file will print the average branching factor over the 20 samples.

5. Evaluate Model Kernel Quality

Model liquid kernel quality was calculated from the linear speration (SP) and generalization (AP) metrics for MNIST and N-MNIST datasets. To compute SP and AP metrics, first noisy spike counts must be generated for the AP metric, as follows.

To generate noisy spike counts for NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST_NOISE.py

The run file requires a W_INI.wdata file (the initialized weights), which should have been generated during model training.

The run file will prompt for the following inputs:

  • GPU? : enter an integer to select the gpu for the training simulation.
  • VERSION? [int] : enter the version number of the trained model.
  • NET_NUM_VAR? [int] : enter the network number of the trained model.
  • BATCH_SIZE? [int] : use the same value used for training the model.
  • BATCHS_PER_BLOCK? [int] : use the same value used for training the model.

The run file will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

To generate noisy spike counts for NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST_NOISE.py

As above, the run file requires 'W_INI.wdata' file. All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST_NOISE.py.

After generating the noisy spike counts, to compute the SP and AP metrics for each trained model enter the following command:

python compute_SP_AP_kernel_quality_measures.py

The run file will prompt for inputs:

  • VERSION? [int] : enter the version number of the trained model.
  • DATASET_MODEL_WAS_TRAINED_ON? [TYPE M FOR MNIST/ N FOR NMNIST] : enter dataset the model was trained on. The run file will print out the SP and AP metrics.

Instructions for evaluating kernel quality for other benchmarked LSM models can be accessed here.

Owner
Computational Brain Lab
Computational Brain Lab @ Rutgers University
Computational Brain Lab
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022