NALSM: Neuron-Astrocyte Liquid State Machine

Related tags

Deep LearningNALSM
Overview

NALSM: Neuron-Astrocyte Liquid State Machine

This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that introduces astrocyte-modulated STDP to the Liquid State Machine learning framework for improved accuracy performance and minimal tuning.

The paper has been accepted at NeurIPS 2021, available here.

Citation

Vladimir A. Ivanov and Konstantinos P. Michmizos. "Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity." 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

@inproceedings{ivanov_2021,
author = {Ivanov, Vladimir A. and Michmizos, Konstantinos P.},
title = {Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity},
year = {2021},
pages={1--10},
booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)}
}

Software Installation

  • Python 3.6.9
  • Tensorflow 2.1 (with CUDA 11.2 using tensorflow.compat.v1)
  • Numpy
  • Multiprocessing

Usage

This code performs the following functions:

  1. Generate the 3D network
  2. Train NALSM
  3. Evaluate trained model accuracy
  4. Evaluate trained model branching factor
  5. Evaluate model kernel quality

Instructions for obtaining/setting up datasets can be accessed here.

Overview of all files can be accessed here.

1. Generate 3D Network

To generate the 3D network, enter the following command:

python generate_spatial_network.py

This will prompt for following inputs:

  • WHICH_DATASET_TO_GENERATE_NETWORK_FOR? [TYPE M FOR MNIST/ N FOR NMNIST] : enter M to make a network with an input layer sized for MNIST/Fashion-MNIST or N for N-MNIST.
  • NETWORK_NUMBER_TO_CREATE? [int] : enter an integer to label the network.
  • SIZE_OF_LIQUID_DIMENSION_1? [int] : enter an integer representing the number of neurons to be in dimension 1 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_2? [int] : enter an integer representing the number of neurons to be in dimension 2 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_3? [int] : enter an integer representing the number of neurons to be in dimension 3 of liquid.

The run file will generate the network and associated log file containing data about the liquid (i.e. connection densities) in sub-directory

/ /networks/ .

2. Train NALSM

2.1 MNIST

To train NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST.py

This will prompt for the following inputs:

  • GPU? : enter an integer specifying the gpu to use for training.
  • VERSION? [int] : enter an integer to label the training simulation.
  • NET_NUM_VAR? [int] : enter the number of the network created in Section 1.
  • BATCH_SIZE? [int] : specify the number of samples to train at same time (batch), for liquids with 1000 neurons, batch size of 250 will work on a 12gb gpu. For larger liquids(8000), smaller batch sizes of 50 should work.
  • BATCHS_PER_BLOCK? [int] : specify number of batchs to keep in memory for training output layer, we found 2500 samples works well in terms of speed and memory (so for batch size of 250, this should be set to 10 (10 x 250 = 2500), for batch size 50 set this to 50 (50 x 50 = 2500).
  • ASTRO_W_SCALING? [float] : specify the astrocyte weight detailed in equation 7 of paper. We used 0.015 for all 1000 neuron liquids, and 0.0075 for 8000 neuron liquids. Generally accuracy peaks with a value around 0.01 (See Appendix).

This will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

2.2 N-MNIST

To train NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

2.3 Fashion-MNIST

To train NALSM model on Fashion-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_F_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

Instructions for training other benchmarked LSM models can be accessed here.

3. Evaluate Trained Model Accuracy

To get accuracy of a trained model, enter the following command:

python get_test_accuracy.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model

This will find the epoch with maximum validation accuracy and return the test accuracy for that epoch.

4. Evaluate Model Branching Factor

To compute the branching factor of a trained model, enter the following command:

python compute_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The trained model directory must have atleast one .spikes file, which contains millisecond spike data of each neuron for 20 arbitrarily selected input samples in a batch. The run file will generate a .bf file with same name as the .spikes file.

To read the generated .bf file, enter the following command:

python get_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The run file will print the average branching factor over the 20 samples.

5. Evaluate Model Kernel Quality

Model liquid kernel quality was calculated from the linear speration (SP) and generalization (AP) metrics for MNIST and N-MNIST datasets. To compute SP and AP metrics, first noisy spike counts must be generated for the AP metric, as follows.

To generate noisy spike counts for NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST_NOISE.py

The run file requires a W_INI.wdata file (the initialized weights), which should have been generated during model training.

The run file will prompt for the following inputs:

  • GPU? : enter an integer to select the gpu for the training simulation.
  • VERSION? [int] : enter the version number of the trained model.
  • NET_NUM_VAR? [int] : enter the network number of the trained model.
  • BATCH_SIZE? [int] : use the same value used for training the model.
  • BATCHS_PER_BLOCK? [int] : use the same value used for training the model.

The run file will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

To generate noisy spike counts for NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST_NOISE.py

As above, the run file requires 'W_INI.wdata' file. All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST_NOISE.py.

After generating the noisy spike counts, to compute the SP and AP metrics for each trained model enter the following command:

python compute_SP_AP_kernel_quality_measures.py

The run file will prompt for inputs:

  • VERSION? [int] : enter the version number of the trained model.
  • DATASET_MODEL_WAS_TRAINED_ON? [TYPE M FOR MNIST/ N FOR NMNIST] : enter dataset the model was trained on. The run file will print out the SP and AP metrics.

Instructions for evaluating kernel quality for other benchmarked LSM models can be accessed here.

Owner
Computational Brain Lab
Computational Brain Lab @ Rutgers University
Computational Brain Lab
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022