Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Overview

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Project Page | Paper

Yifan Peng*, Suyeon Choi*, Jonghyun Kim, Gordon Wetzstein

* Authors contributed equally.

This repository contains the scripts associated with the Science Advances paper "Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration"

Getting Started

First, load the submodules in neural_holography folder with

git submodule init
git submodule update

Also, you can modify the spectrum information in spectra folder based on measured spectrum from your own setup.

High-level structure

The code is organized as follows:

  • main.py generates phase patterns with our partially coherent propagatator via SGD/CITL
  • propagation_partial.py contains the partially coherent wave propagation operator implementation.
  • spectrum.py contains utility functions for reading measured spectra.

./neural-holography/: See here for descriptions.

Running the test

The SLM phase patterns can be reproduced with

SGD with the partially coherent model:

python main.py --channel=0 --method=SGD --prop_model=model --root_path=./phases

SGD with Camera-in-the-loop optimization:

python main.py --channel=0 --method=SGD --prop_model=model --citl=True --root_path=./phases

Citation

If you find our work useful in your research, please cite:

@article{Peng:2021:PartiallyCoherent,
author = {Yifan Peng  and Suyeon Choi  and Jonghyun Kim  and Gordon Wetzstein },
title = {Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration},
journal = {Science Advances},
volume = {7},
number = {46},
pages = {eabg5040},
year = {2021},
doi = {10.1126/sciadv.abg5040}

License

This project is licensed under the following license, with exception of the file "data/1.png", which is licensed under the CC-BY license.

Copyright (c) 2021, Stanford University

All rights reserved.

Redistribution and use in source and binary forms for academic and other non-commercial purposes with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code, including modified source code, must retain the above copyright notice, this list of conditions and the following disclaimer.

  • Redistributions in binary form or a modified form of the source code must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  • Neither the name of The Leland Stanford Junior University, any of its trademarks, the names of its employees, nor contributors to the source code may be used to endorse or promote products derived from this software without specific prior written permission.

  • Where a modified version of the source code is redistributed publicly in source or binary forms, the modified source code must be published in a freely accessible manner, or otherwise redistributed at no charge to anyone requesting a copy of the modified source code, subject to the same terms as this agreement.

THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE LELAND STANFORD JUNIOR UNIVERSITY OR ITS TRUSTEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact

If you have any questions, please contact

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! πŸš€

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution πŸ“œ Technical report πŸ—¨οΈ Presentation πŸŽ‰ Announcement πŸ›†Motion Prediction Channel Website πŸ›†

158 Jan 08, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022