auto_code_complete is a auto word-completetion program which allows you to customize it on your need

Overview

auto_code_complete v1.3

purpose and usage

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is a combined model of a deep-learning NLP(Natural Language Process) model structure called 'GRU(gated recurrent unit)' and 'LSTM(Long Short Term Memory)'.

the model for this program is one of the deep-learning NLP(Natural Language Process) model structure called 'GRU(gated recurrent unit)'.

data preprocessing

data-preprocess

model structure

model-structure

how to use (terminal)

auto-code1 auto-code2

  • first, download the repository on your local environment.
  • install the neccessary libraries on your dependent environment.

pip install -r requirements.txt

  • change your working directory to auto-complete/ and execute the line below

python -m auto_complete_model

  • it will require for you to enter the data you want to train with the model
ENTER THE CODE YOU WANT TO TRAIN IN YOUR MODEL : tensorflow tf.keras tf.keras.layers LSTM
==== TRAINING START ====
2022-01-08 18:24:14.308919: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz
Epoch 1/100
3/3 [==============================] - 1s 59ms/step - loss: 4.7865 - acc: 0.0532
Epoch 2/100
3/3 [==============================] - 0s 62ms/step - loss: 3.9297 - acc: 0.2872
Epoch 3/100
3/3 [==============================] - 0s 58ms/step - loss: 2.9941 - acc: 0.5532
...
Epoch 31/100
3/3 [==============================] - 0s 75ms/step - loss: 0.2747 - acc: 0.8617
Epoch 32/100
3/3 [==============================] - 0s 65ms/step - loss: 0.2700 - acc: 0.8298
==== TRAINING DONE ====
Now, Load the best weights on your model.
  • if you input your dataset successfully, it will ask for any uncompleted word to be entered.
ENTER THE UNCOMPLETED CODE YOU WANT TO COMPLETE : t tf te l la li k ke tf.kera tf.keras.l
t  - best recommendation : tensorflow
		 - all recommendations :  ['tensorflow']
tf  - best recommendation : tf.keras
		 - all recommendations :  ['tfkeras', 'tf.keras']
te  - best recommendation : tensorflow
		 - all recommendations :  ['tensorflow']
l  - best recommendation : list
		 - all recommendations :  ['list', 'layers']
la  - best recommendation : lange
		 - all recommendations :  ['layers', 'lange']
li  - best recommendation : list
		 - all recommendations :  ['list']
k  - best recommendation : keras
		 - all recommendations :  ['keras']
ke  - best recommendation : keras
		 - all recommendations :  ['keras']
tf.kera  - best recommendation : tf.keras
		 - all recommendations :  []
tf.keras.l  - best recommendation : tf.keras.layers
		 - all recommendations :  ['tf.keras.layers']
  • it will return the best matched word to complete and other recommendations
Do you want to check only the recommendations? (y/n) : y
['tensorflow'], 
['tfkeras', 'tf.keras'], 
['tensorflow'], 
['list', 'layers'], 
['layers', 'lange'], 
['list'], 
['keras'], 
['keras'], 
[], 
['tf.keras.layers']

version update & issues

v1.2 update

2022.01.08

  • change deep-learning model from GRU to GRU+LSTM to improve the performance

By adding the same structrue of new LSTM layers to concatenate before the output layer to an existing model, it shows faster learning and better accuracies in predicting matched recommendations for given incomplete words.

v1.3.1 update

2022.01.09

  • fix the glitches in data preprocessing

We solved the problem that it wouldn't add a new dataset on an existing dataset.

  • add plot_history function in a model class

v1.3.2 update

2022.01.10

  • add model_save,model_load mode in order that users can save and load their model while training a customized model
  • add data_split mode so that the big data can be trained seperately.
samp_model = auto_coding(new_code=samp_text,
                      # verbose=0,
                       batch_size=100,
                       epochs=200,
                       patience=10,
                       model_summary=True,
                       model_save=True,
                       model_name='samp_test', # samp_test/samp_test.h5
                       model_load=True,
                       data_split=True,
                       data_split_num=3 # the number into which users want to split the data
                      )

v1.3.3 update

2022.01.11

  • add new metrics Accuracy for Recommendations to evaluate the model's instant performance when predicting the recommendation list for words.
t  - best match : tf
	 - all recommendations :  ['tensorflow', 'tf']
tup  - best match : tuple
	 - all recommendations :  []
p  - best match : pd
	 - all recommendations :  ['plt', 'pd', 'pandas']
li  - best match : list
	 - all recommendations :  []
d  - best match : dataset
	 - all recommendations :  ['dic', 'dataset']
I  - best match : Import
	 - all recommendations :  []
so  - best match : sort
	 - all recommendations :  ['sort']
m  - best match : matplotlib.pyplot
	 - all recommendations :  []
Accuracy for Best:  0.875
Accuracy for Recommendations :  1.0
Owner
RUO
AI, Data Science, ML, DL
RUO
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022