ConvMAE: Masked Convolution Meets Masked Autoencoders

Overview

ConvMAE

ConvMAE: Masked Convolution Meets Masked Autoencoders

Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1,

1 Shanghai AI Laboratory, 2 MMLab, CUHK, 3 Sensetime Research.

This repo is the official implementation of ConvMAE: Masked Convolution Meets Masked Autoencoders. It currently concludes codes and models for the following tasks:

ImageNet Pretrain: See PRETRAIN.md.
ImageNet Finetune: See FINETUNE.md.
Object Detection: See DETECTION.md.
Semantic Segmentation: See SEGMENTATION.md.

Updates

16/May/2022

The supported codes and models for COCO object detection and instance segmentation are available.

11/May/2022

  1. Pretrained models on ImageNet-1K for ConvMAE.
  2. The supported codes and models for ImageNet-1K finetuning and linear probing are provided.

08/May/2022

The preprint version is public at arxiv.

Introduction

ConvMAE framework demonstrates that multi-scale hybrid convolution-transformer can learn more discriminative representations via the mask auto-encoding scheme.

  • We present the strong and efficient self-supervised framework ConvMAE, which is easy to implement but show outstanding performances on downstream tasks.
  • ConvMAE naturally generates hierarchical representations and exhibit promising performances on object detection and segmentation.
  • ConvMAE-Base improves the ImageNet finetuning accuracy by 1.4% compared with MAE-Base. On object detection with Mask-RCNN, ConvMAE-Base achieves 53.2 box AP and 47.1 mask AP with a 25-epoch training schedule while MAE-Base attains 50.3 box AP and 44.9 mask AP with 100 training epochs. On ADE20K with UperNet, ConvMAE-Base surpasses MAE-Base by 3.6 mIoU (48.1 vs. 51.7).

tenser

Pretrain on ImageNet-1K

The following table provides pretrained checkpoints and logs used in the paper.

ConvMAE-Base
pretrained checkpoints download
logs download

Main Results on ImageNet-1K

Models #Params(M) Supervision Encoder Ratio Pretrain Epochs FT [email protected](%) LIN [email protected](%) FT logs/weights LIN logs/weights
BEiT 88 DALLE 100% 300 83.0 37.6 - -
MAE 88 RGB 25% 1600 83.6 67.8 - -
SimMIM 88 RGB 100% 800 84.0 56.7 - -
MaskFeat 88 HOG 100% 300 83.6 N/A - -
data2vec 88 RGB 100% 800 84.2 N/A - -
ConvMAE-B 88 RGB 25% 1600 85.0 70.9 log/weight

Main Results on COCO

Mask R-CNN

Models Pretrain Pretrain Epochs Finetune Epochs #Params(M) FLOPs(T) box AP mask AP logs/weights
Swin-B IN21K w/ labels 300 36 109 0.7 51.4 45.4 -
Swin-L IN21K w/ labels 300 36 218 1.1 52.4 46.2 -
MViTv2-B IN21K w/ labels 300 36 73 0.6 53.1 47.4 -
MViTv2-L IN21K w/ labels 300 36 239 1.3 53.6 47.5 -
Benchmarking-ViT-B IN1K w/o labels 1600 100 118 0.9 50.4 44.9 -
Benchmarking-ViT-L IN1K w/o labels 1600 100 340 1.9 53.3 47.2 -
ViTDet IN1K w/o labels 1600 100 111 0.8 51.2 45.5 -
MIMDet-ViT-B IN1K w/o labels 1600 36 127 1.1 51.5 46.0 -
MIMDet-ViT-L IN1K w/o labels 1600 36 345 2.6 53.3 47.5 -
ConvMAE-B IN1K w/o lables 1600 25 104 0.9 53.2 47.1 log/weight

Main Results on ADE20K

UperNet

Models Pretrain Pretrain Epochs Finetune Iters #Params(M) FLOPs(T) mIoU logs/weights
DeiT-B IN1K w/ labels 300 16K 163 0.6 45.6 -
Swin-B IN1K w/ labels 300 16K 121 0.3 48.1 -
MoCo V3 IN1K 300 16K 163 0.6 47.3 -
DINO IN1K 400 16K 163 0.6 47.2 -
BEiT IN1K+DALLE 1600 16K 163 0.6 47.1 -
PeCo IN1K 300 16K 163 0.6 46.7 -
CAE IN1K+DALLE 800 16K 163 0.6 48.8 -
MAE IN1K 1600 16K 163 0.6 48.1 -
ConvMAE-B IN1K 1600 16K 153 0.6 51.7 soon

Main Results on Kinetics-400

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 100 87 77.8
VideoMAE-B 800 100 87 79.4
VideoMAE-B 1600 100 87 79.8
VideoMAE-B 1600 100 (w/ Repeated Aug) 87 80.7 94.7
SpatioTemporalLearner-B 800 150 (w/ Repeated Aug) 87 81.3 94.9
VideoConvMAE-B 200 100 86 80.1 94.3 Soon
VideoConvMAE-B 800 100 86 81.7 95.1 Soon
VideoConvMAE-B-MSD 800 100 86 82.7 95.5 Soon

Main Results on Something-Something V2

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 40 87 66.1
VideoMAE-B 800 40 87 69.3
VideoMAE-B 2400 40 87 70.3
VideoConvMAE-B 200 40 86 67.7 91.2 Soon
VideoConvMAE-B 800 40 86 69.9 92.4 Soon
VideoConvMAE-B-MSD 800 40 86 70.7 93.0 Soon

Getting Started

Prerequisites

  • Linux
  • Python 3.7+
  • CUDA 10.2+
  • GCC 5+

Training and evaluation

Acknowledgement

The pretraining and finetuning of our project are based on DeiT and MAE. The object detection and semantic segmentation parts are based on MIMDet and MMSegmentation respectively. Thanks for their wonderful work.

License

ConvMAE is released under the MIT License.

Citation

@article{gao2022convmae,
  title={ConvMAE: Masked Convolution Meets Masked Autoencoders},
  author={Gao, Peng and Ma, Teli and Li, Hongsheng and Dai, Jifeng and Qiao, Yu},
  journal={arXiv preprint arXiv:2205.03892},
  year={2022}
}
Owner
Alpha VL Team of Shanghai AI Lab
Alpha VL Team of Shanghai AI Lab
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
TianyuQi 10 Dec 11, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022