An off-line judger supporting distributed problem repositories

Related tags

Deep LearningThaw
Overview

Thaw

中文 | English

Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHub or other open sourse repositories, get problems locally and judge programs automatically.

We request people who write problems add licenses to their problems or clear copyright notice so that problems can be shared easier, and data generator and solution as well, which can support generalization test and help improve the problems.

By making it off-line, distributed and based on GitHub, situations in which a few administrators examine a large number of problems can be prevented. The nice atmosphere on GitHub can also make quanlity of discussion higher.

We also hope to improve traditional methods of judging. Making it off-line helps avoid creating motivation of cheating, and we hope people do not exceedingly pursue the optimization of the program, but concentrate on things like the readability of code. We will support judging with less strict limit of time and memory, and estimating the polynomial time complexity of a program.

We will make it simple to configure and highly hackable too.

Installation

Package will be created and be released on pip and GitHub after enough improvement and tests on 0.0.1.

Manual

See ./docs/manual.md.

Also See sampleproblem about how to write a problem with Thaw for example.

Usage

Sorry for the project being incompleted. But it will be completed as quick as possible.

Below are expected result.

Create a problem:

thaw init .
git init sampleproblem
cd sampleproblem
thaw init hello_world
cd hello_world
vim -p hello_world.zh-CN.md hello_world.en-US.md std.cpp std.py checker.py

Solve a problem:

vim hello_world.cpp
thaw submit hello_world.cpp

Release a problem:

git add .
git commit -m "add hello_world"
git remote add origin https://github.com/username/sampleproblem
git push origin master

Download a problem:

git clone https://github.com/username/sampleproblem

How to contribute

Welcome to join us! You can improve Thaw by send an Issue or a Pull Request.

Or create a GitHub repository to release your problem according to the format, and create open and shared atmosphere of algorithm contest with us. You can add the url of your repository to repositories.dat to make it easy for others to get your problems and spread your problems.

We will create a Gitter group when more people join.

Contributors

Thank peers who improve Thaw together and share problems

License

AGPL

Owner
countercurrent_time
countercurrent_time
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022