VisionKG: Vision Knowledge Graph

Related tags

Deep Learningvision
Overview

VisionKG: Vision Knowledge Graph

Official Repository of VisionKG by

Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and Danh Le-Phuoc.

About The Project

VisionKG is an RDF-based knowledge and built upon the FAIR principles. It provides a fatastic way to interlink and integrate data across different sources and spaces (e.g. MSCOCO, Visual_Genome, KITTI, ImageNet and so on) and brings a novel way to organize your data, explore the interpretability and explainability of models. By a few lines of SPARQL, you could query your desired number of images, objects from various built-in datasets and get their annotations via our Web API and build your models in a data-centric way.

The Overview of VisionKG

Demo for VisionKG:

VsionKG_A_Unified_Vision_Knowledge_Graph.mp4

Milestones:

In the future, VisionKG will integrated more and more triples, images, annotations, visual relationships and so on. For the pre-trained models, besides the yolo series, now it also supports other one- or two-stage architectures such as EfficientDet, Faster-RCNN, and so on. For more details, please check the infomation below.

Triples Images Annotations Tasks Datasets
08.2021 67M 239K 1M Object-Detection
Visual-Relationship
KITTI
MSCOCO
Visual-Genome
10.2021 140M 13M 16M Image-Recognition ImageNet

Faster-RCNN

YOLO-Series

EfficientDet

RetinaNet

FCOS

Features

  • Query images / anotations across multi data sources using SPARQL
  • Online preview of the queried results
  • Graph-based exploration across visual label spaces
  • Interlinke and align labels under different labels spaces under shared semantic understanding
  • Building training pipelines with mixed datasets
  • Cross-dataset validation and testing
  • Explore the interpretability and explainability of models

Explore more about VisionKG →

Quick-View Open in colab

VisionKG can also be integrated into many famous toolboxes. For that, we also provides three pipelines for image recognition and obejct detection based on VisionKG and other toolboxes.

Object Detection:

VisionKG_meet_MMdetection →

VisionKG_meet_Pytorch_model_Zoo →

Image Recognition:

VisionKG_meet_timm →

VisionKG_meet_MMclassification →

Acknowledgements

Citation

If you use VisionKG in your research, please cite our work.

@inproceedings{Kien:2021,
  title     = {Fantastic Data and How to Query Them},
  author    = {Trung, Kien-Tran and 
               Anh, Le-Tuan and Manh, Nguyen-Duc and Jicheng, Yuan and 
               Danh, Le-Phuoc},
  booktitle = {Proceedings of the {NeurIPS} 2021 Workshop on Data-Centric AI},
  series    = {Workshop Proceedings},
  year      = {2021}
}
@inproceedings{Anh:2021,
  title     = {VisionKG: Towards A Unified Vision Knowledge Graph},
  author    = {Anh, Le-Tuan and Manh, Nguyen-Duc and Jicheng, Yuan and 
               Trung, Kien-Tran and
               Manfred, Hauswirth and Danh, Le-Phuoc},
  booktitle = {Proceedings of the {ISWC} 2021 Posters & Demonstrations Track},
  series    = {Workshop Proceedings},
  year      = {2021}
}
Owner
Continuous Query Evaluation over Linked Stream (CQELS)
Platform-agnostic Execution Framework on RDF Stream Processing and Reasoning
Continuous Query Evaluation over Linked Stream (CQELS)
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022