Source code for "OmniPhotos: Casual 360° VR Photography"

Overview

OmniPhotos: Casual 360° VR Photography

Project Page | Video | Paper | Demo | Data

This repository contains the source code for creating and viewing OmniPhotos – a new approach for casual 360° VR photography using a consumer 360° video camera.

OmniPhotos: Casual 360° VR Photography
Tobias Bertel, Mingze Yuan, Reuben Lindroos, Christian Richardt
ACM Transactions on Graphics (SIGGRAPH Asia 2020)

Demo

The quickest way to try out OmniPhotos is via our precompiled demo (610 MB). Download and unzip to get started. Documentation for the precompiled binaries, which can also be downloaded separately (25 MB), can be found in the downloaded demo directory.

For the demo to run smoothly, we recommend a recently updated Windows 10 machine with a discrete GPU.

Additional OmniPhotos

We provide 31 OmniPhotos for download:

  • 9 preprocessed datasets that are ready for viewing (3.2 GB zipped, 12.8 GB uncompressed)
  • 31 unprocessed datasets with their input videos, camera poses etc.; this includes the 9 preprocessed datasets (17.4 GB zipped, 17.9 GB uncompressed)

Note: A few of the .insv files are missing for the 5.7k datasets. If you need to process these from scratch (using the insv files) these files can be found here.

How to view OmniPhotos

OmniPhotos are viewed using the "Viewer" executable, either in windowed mode (default) or in a compatible VR headset (see below). To run the viewer executable on the preprocessed datasets above, run the command:

Viewer.exe path-to-datasets/Preprocessed/

with paths adjusted for your machine. The viewer will automatically load the first dataset in the directory (in alphabetical order) and give you the option to load any of the datasets in the directory.

If you would like to run the viewer with VR enabled, please ensure that the firmware for your HMD is updated, you have SteamVR installed on your machine, and then run the command:

Viewer.exe --vr path-to-datasets/Preprocessed/

The OmniPhotos viewer can also load a specific single dataset directly:

Viewer.exe [--vr] path-to-datasets/Preprocessed/Temple3/Config/config-viewer.yaml

How to preprocess datasets

If you would like to preprocess additional datasets, for example "Ship" in the "Unprocessed" directory, run the command:

Preprocessing.exe path-to-datasets/Unpreprocessed/Ship/Config/config-viewer.yaml

This will preprocess the dataset according to the options specified in the config file. Once the preprocessing is finished, the dataset can be opened in the Viewer.

For processing new datasets from scratch, please follow the detailed documentation at Python/preprocessing/readme.md.

Compiling from source

The OmniPhotos Preprocessing and Viewer applications are written in C++11, with some Python used for preparing datasets.

Both main applications and the included libraries use CMake as build system generator. We recommend CMake 3.16 or newer, but older 3.x versions might also work.

Our code has been developed and tested with Microsoft Visual Studio 2015 and 2019 (both 64 bit).

Required dependencies

  1. GLFW 3.3 (version 3.3.1 works)
  2. Eigen 3.3 (version 3.3.2 works)
    • Please note: Ceres (an optional dependency) requires Eigen version "3.3.90" (~Eigen master branch).
  3. OpenCV 4.2
    • OpenCV 4.2 includes DIS flow in the main distribution, so precompiled OpenCV can be used.
    • OpenCV 4.1.1 needs to be compiled from source with the optflow contrib package (for DIS flow).
    • We also support the CUDA Brox flow from the cudaoptflow module, if it is compiled in. In this case, tick USE_CUDA_IN_OPENCV in CMake.
  4. OpenGL 4.1: provided by the operating system
  5. glog (newer than 0.4.0 master works)
  6. gflags (version 2.2.2 works)

Included dependencies (in /src/3rdParty/)

  1. DearImGui 1.79: included automatically as a git submodule.
  2. GL3W
  3. JsonCpp 1.8.0: almalgamated version
  4. nlohmann/json 3.6.1
  5. OpenVR 1.10.30: enable with WITH_OPENVR in CMake.
  6. TCLAP
  7. tinyfiledialogs 3.3.8

Optional dependencies

  1. Ceres (with SuiteSparse) is required for the scene-adaptive proxy geometry fitting. Enable with USE_CERES in CMake.
  2. googletest (master): automatically added when WITH_TEST is enabled in CMake.

Citation

Please cite our paper if you use this code or any of our datasets:

@article{OmniPhotos,
  author    = {Tobias Bertel and Mingze Yuan and Reuben Lindroos and Christian Richardt},
  title     = {{OmniPhotos}: Casual 360° {VR} Photography},
  journal   = {ACM Transactions on Graphics},
  year      = {2020},
  volume    = {39},
  number    = {6},
  pages     = {266:1--12},
  month     = dec,
  issn      = {0730-0301},
  doi       = {10.1145/3414685.3417770},
  url       = {https://richardt.name/omniphotos/},
}

Acknowledgements

We thank the reviewers for their thorough feedback that has helped to improve our paper. We also thank Peter Hedman, Ana Serrano and Brian Cabral for helpful discussions, and Benjamin Attal for his layered mesh rendering code.

This work was supported by EU Horizon 2020 MSCA grant FIRE (665992), the EPSRC Centre for Doctoral Training in Digital Entertainment (EP/L016540/1), RCUK grant CAMERA (EP/M023281/1), an EPSRC-UKRI Innovation Fellowship (EP/S001050/1), a Rabin Ezra Scholarship and an NVIDIA Corporation GPU Grant.

Comments
  • Documentation pipeline update

    Documentation pipeline update

    Pipeline to automatically create documenation on read the docs using doxygen.

    • [ ] link to github page on index.html (mainpage.hpp)
    • [ ] add documentation convention to docs\README.md
    • [ ] fork branch from cr333/main and apply changes to that
    • [ ] create new PR from forked branch
    opened by reubenlindroos 1
  • Adds a progress bar when circleselector is running

    Adds a progress bar when circleselector is running

    Also improves speed of the circleselector module by ~50%

    Todo:

    • [x] add tqdm to requirements.txt
    • [x] np.diffs for find_path_length
    • [x] atomic lock for incrementing the progress bar?
    opened by reubenlindroos 0
  • Circle Selector

    Circle Selector

    • [x] clean up requirements.txt
    • [x] save plot of heatmaps to the cache/dataset directory.
    • [x] move json file to capture directory
    • [x] update the template with option to switch off circlefitting
    • [x] update template to remove some of the options (e.g op_filename_expression)
    • [x] Update README.md with automatic circle selection (section 2.2)
    • [x] Update documentation for installation?
    • [x] Linting (spacing), comment convention, Pep convention
    • [x] sort imports
    • [x] replace op_filename_epression with original_filename_expression

    cv_utils

    • [x] remove extra copy of computeColor
    • [x] change pjoin to os.path.join
    • [x] add more documentation for parameters in cv_utils (change lookatang to look_at_angle)
    • [x] 'nxt' to 'next'
    • [x] comment on line 100 (slice_equirect)

    datatypes

    • [x] more comments on some of the methods in PointDict
    opened by reubenlindroos 0
  • Documentation pipeline update

    Documentation pipeline update

    Pipeline to automatically create documenation on read the docs using doxygen.

    • [x] link to github page on index.html (mainpage.hpp)
    • [x] add documentation convention to docs\README.md
    • [x] fork branch from cr333/main and apply changes to that
    • [x] create new PR from forked branch
    • [x] remove documentation for header comment block in docs/README.md
    • [x] cleanup index.rst (try removing, see if sphinx can build anyway)
    • [ ] mainpage.hpp cleanup (capitalise, centralise)
    • [x] clarify line 48 in README.md
    opened by reubenlindroos 0
  • Demo updated

    Demo updated

    Converts demo documentation files from rst and based in sphinx to be hosted in Github. The sites markdown API now renders the documentation files rather than using sphinx + rtd.

    opened by reubenlindroos 0
  • Adds build test to master branch on push and PR

    Adds build test to master branch on push and PR

    build

    • [ ] change actions to not send email for every build
    • [x] fix requested changes
    • [x] make into squash merge to not mess with main branch history
    • [x] group build steps (building dependencies which ahve been left seperate for debugging purposes)
    • [x] check glog build variables in cmake (e.g BUILD_TEST should not be enabled)
    • [x] check eigen warnings in build log
    • [x] check if precompiled headers might speed up build
    • [x] check if multithread build could be used
    • [x] remove verbose flag from extraction of opencv

    test

    • [x] add test data download
    • [x] reduce size of test dataset
    • [x] check what happens on failure
    • [ ] check if we can "publish" test results (xml?)
    opened by reubenlindroos 0
  • Get problems while preprocessing

    Get problems while preprocessing

    I did download all of those binary files from here:https://github.com/cr333/OmniPhotos/releases/download/v1.1/OmniPhotos-v1.1-win10-x64.zip

    And I did put ffmpeg.exe into system Path. However, Im getting errors saying this below:

    $ ./preproc/preproc.exe -c preproc-config-template.yaml [23276] Failed to execute script 'main' due to unhandled exception! Traceback (most recent call last): File "main.py", line 24, in File "preproc_app.py", line 39, in init File "data_preprocessor.py", line 32, in init File "abs_preprocessor.py", line 70, in init File "abs_preprocessor.py", line 225, in load_origin_data_info File "ffmpeg_probe.py", line 20, in probe File "subprocess.py", line 800, in init File "subprocess.py", line 1207, in _execute_child FileNotFoundError: [WinError 2]

    image

    opened by BlairLeng 2
Releases(v1.1)
Owner
Christian Richardt
Christian Richardt
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022