Cross-platform CLI tool to generate your Github profile's stats and summary.

Overview

ghs

Cross-platform CLI tool to generate your Github profile's stats and summary.

MIT License prs welcome platforms

Preview

Hop on to examples for other usecases.


Jump to:

Installation

Using pip

The stable version of this package is maintained on pypi, install using pip:

pip install ghs

Using source code

This can be useful when you want to do a code contribution to this project. You can test and verify your local changes before submitting a Pull Request.

  1. Clone the repository
git clone https://github.com/interviewstreet/ghs.git
  1. Navigate to the project root and create a virtual environment
python -m venv venv
  1. Activate the virtual environment
    • For macOS and linux, run source venv/bin/activate
    • For windows, run .\venv\Scripts\activate
  2. Install the cli by running the following command while you are in the project root
pip install .

Note: You need to reinstall by running the pip command if you want the cli to pick up your code changes.

Docker

docker build -t ghs:latest .
docker run -it ghs ghs --help

Github PAT

Generate a Github personal access token (https://github.com/settings/tokens) and use the ghs -t command to save it in the config file. This will be used to make the API requests to Github. A happy side-effect of this is that your private contributions are also considered while generating the stats and the summary of your username.

Please make sure that you give the following scopes to the token:

  • repo
  • read:user
  • read:packages

PS: Your Github PAT is not compromised by ghs. Please read the Privacy Notice to know more.

Usage

ghs [options]
Option Description
-v --version Print the cli version
-t --token-update Prompts the user for github PAT and saves it in the config file
-u <username> Print the general stats for the provided username
-s --summary Print the summary of the user. The username should be provided using the -u flag.
-c --copy-to-clipboard Copy the output to clipboard. Can be used with -u or -s.
-h --help Show the help message of the cli

Examples

ghs -u <username>

Prints the general Github stats for the given username.

copy to clipboard

Provide the -c flag to copy the output to your clipboard.

Other options for summary

In addition to getting the Github summary from the beginning, you can also get the summary of the last 12 months or you can provide your own custom duration.

Installation hiccups on windows

Could not install package due to Environment Error

It can be solved by scoping the installation. Add the flag --user to the pip command (pip install --user ghs).

Alternatively, you can install the tool inside a virtual environment

ghs command not found even after installing

Most likely the place where the command is installed is not in the system PATH. On windows, there are a few places where the packages might be installed. After confirming the location, add that directory to the PATH.

How to contribute?

Please see Contributing guidelines for more information.

Changelog

You can checkout Releases for the changelog.

Privacy Notice

ghs does not collect any data.

  • It has no home server. The Github PAT is stored locally in your machine.
  • It doesn't embed any kind of analytic hooks in its code.

The only time ghs connects to a remote server is when you want to generate the stats and summary of your github profile. The cli uses the Github GraphQL and Github Rest APIs to do so. The data collected via the APIs is not sent anywhere. It's displayed in your terminal or copied to your clipboard (only if you explicitly tell the tool to do so by providing the -c or --copy-to-clipboard flag).

License

MIT © HackerRank

Comments
  • bug: change in scope in github pat

    bug: change in scope in github pat

    Screenshot from 2022-04-06 16-37-58 The program asks for read:user , repo and read:packages scope for github pat. But GitHub has changed the structure of scopes. There is no read:user and read:packages scope. Github scopes (new) : https://docs.github.com/en/developers/apps/building-oauth-apps/scopes-for-oauth-app

    invalid 
    opened by jaiakash 3
  • Error: Query failed with status code: 401

    Error: Query failed with status code: 401

    I'm using this in Ubuntu 20.04 I've installed ghs using pip install ghs command and it's showing this error. I also tried using the source code and still shows the same error. I used this last month and it worked fine, maybe it's because of the Github Personal Access Token expired or something else. Is there a way to forget the user so it asks for new Access Token (It didn't ask for it this time)

    Screenshot from 2022-05-02 20-59-30

    opened by abhijhacodes 2
  • There is no options to fill the Required scopes

    There is no options to fill the Required scopes

    Hi

    ghs -t 
    
    
    Creating config file
    please enter your github pat: [ghp_xxxxxxxxxxxxxxxxxxxx]
    Error: The token does not have valid scopes.
     Required scopes: ['read:user', 'repo', 'read:packages'].
     Provided token scopes: ['repo']
    
    

    I have granted the permission to the repo, however, on the GitHub setting page, there is not an option to make a read, how can I set this?

    A suggestion is that, may you delete the judgment of read:* or make this optional

    opened by jianwang-ntu 2
  • `ghs` not working

    `ghs` not working

    Running ghs -u ratika-12 throws:

    Error: Query failed with status code: 401
    Traceback: 
      File "/Users/ratikaswami/ghs/venv/lib/python3.8/site-packages/ghs/ghs.py", line 293, in main_proxy
        main()
      File "/Users/ratikaswami/ghs/venv/lib/python3.8/site-packages/ghs/ghs.py", line 267, in main
        verify_github_username(args.username)
      File "/Users/ratikaswami/ghs/venv/lib/python3.8/site-packages/ghs/ghs.py", line 33, in verify_github_username
        if fetch_user_id(username) is None:
      File "/Users/ratikaswami/ghs/venv/lib/python3.8/site-packages/ghs/fetchers.py", line 129, in fetch_user_id
        raise Exception(f"Query failed with status code: {request.status_code}")
    
    opened by ratika-12 2
  • Bug: Unable to update token

    Bug: Unable to update token

    Hi, earlier I used the cli to generate the summary. Today I updated my token and tried to refresh/insert the new token but seems like the cli isn't accepting it. As a result the summary isn't generated backstage_bug

    Also is the token stored as a variable ? I don't see any .env file here even to manually update my token :thinking:

    bug 
    opened by ron-debajyoti 2
  • add: download badges in readme

    add: download badges in readme

    I have added download per month badge. But there is no "total download" badge available. See https://github.com/badges/shields/issues/4319

    Issue #2

    opened by jaiakash 2
  • Error: __enter__- Checking if the token is valid

    Error: __enter__- Checking if the token is valid

    Hey , whenever I try to enter my PAT key I always run into this error , I have ticked all required scopes while generating key and also added C:\Users\mahim\Appdata\Local\Programs\Python\Python39\lib\site-packages to the PATH image

    opened by mahimdashora 1
  • Create Desktop Assistant

    Create Desktop Assistant

    This is a code for a desktop assistant which will perform tasks like writing emails for you and extracting data from the net and opening and closing various apps in your pc.

    invalid 
    opened by manvendra542001 1
  • Documentation error for Windows

    Documentation error for Windows

    The admin, Your documentation for Windows Users for activating the virtual environment contains an error that doesn't allow the user to run this

    Step 3 . Activate the virtual environment

    For windows, run .\venv\Scripts\activate // error

    It should be source venv/Scripts/activate for Windows user Allow me to change it in your documentation so that next time no one faces the issue that I faced today.

    opened by iamakhileshmishra 0
  • Add CodeQL workflow for GitHub code scanning

    Add CodeQL workflow for GitHub code scanning

    Hi interviewstreet/ghs!

    This is a one-off automatically generated pull request from LGTM.com :robot:. You might have heard that we’ve integrated LGTM’s underlying CodeQL analysis engine natively into GitHub. The result is GitHub code scanning!

    With LGTM fully integrated into code scanning, we are focused on improving CodeQL within the native GitHub code scanning experience. In order to take advantage of current and future improvements to our analysis capabilities, we suggest you enable code scanning on your repository. Please take a look at our blog post for more information.

    This pull request enables code scanning by adding an auto-generated codeql.yml workflow file for GitHub Actions to your repository — take a look! We tested it before opening this pull request, so all should be working :heavy_check_mark:. In fact, you might already have seen some alerts appear on this pull request!

    Where needed and if possible, we’ve adjusted the configuration to the needs of your particular repository. But of course, you should feel free to tweak it further! Check this page for detailed documentation.

    Questions? Check out the FAQ below!

    FAQ

    Click here to expand the FAQ section

    How often will the code scanning analysis run?

    By default, code scanning will trigger a scan with the CodeQL engine on the following events:

    • On every pull request — to flag up potential security problems for you to investigate before merging a PR.
    • On every push to your default branch and other protected branches — this keeps the analysis results on your repository’s Security tab up to date.
    • Once a week at a fixed time — to make sure you benefit from the latest updated security analysis even when no code was committed or PRs were opened.

    What will this cost?

    Nothing! The CodeQL engine will run inside GitHub Actions, making use of your unlimited free compute minutes for public repositories.

    What types of problems does CodeQL find?

    The CodeQL engine that powers GitHub code scanning is the exact same engine that powers LGTM.com. The exact set of rules has been tweaked slightly, but you should see almost exactly the same types of alerts as you were used to on LGTM.com: we’ve enabled the security-and-quality query suite for you.

    How do I upgrade my CodeQL engine?

    No need! New versions of the CodeQL analysis are constantly deployed on GitHub.com; your repository will automatically benefit from the most recently released version.

    The analysis doesn’t seem to be working

    If you get an error in GitHub Actions that indicates that CodeQL wasn’t able to analyze your code, please follow the instructions here to debug the analysis.

    How do I disable LGTM.com?

    If you have LGTM’s automatic pull request analysis enabled, then you can follow these steps to disable the LGTM pull request analysis. You don’t actually need to remove your repository from LGTM.com; it will automatically be removed in the next few months as part of the deprecation of LGTM.com (more info here).

    Which source code hosting platforms does code scanning support?

    GitHub code scanning is deeply integrated within GitHub itself. If you’d like to scan source code that is hosted elsewhere, we suggest that you create a mirror of that code on GitHub.

    How do I know this PR is legitimate?

    This PR is filed by the official LGTM.com GitHub App, in line with the deprecation timeline that was announced on the official GitHub Blog. The proposed GitHub Action workflow uses the official open source GitHub CodeQL Action. If you have any other questions or concerns, please join the discussion here in the official GitHub community!

    I have another question / how do I get in touch?

    Please join the discussion here to ask further questions and send us suggestions!

    opened by lgtm-com[bot] 0
  • Feature Request: Associate roles with each duration for better context of summary

    Feature Request: Associate roles with each duration for better context of summary

    For the --summary tag, we provide 3 options. The 3rd option is to provide custom durations for which the summary needs to be generated. We can compliment this feature by also taking the roles associated with each duration as input.

    This would provide better context to the summary. For eg: it's expected that when you move to a leadership role in engineering, you tend to do more code reviews.

    enhancement 
    opened by makkoncept 0
Releases(v0.1.4)
Owner
HackerRank
Match Every Developer to the Right Job.
HackerRank
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022