v objective diffusion inference code for JAX.

Overview

v-diffusion-jax

v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman).

The models are denoising diffusion probabilistic models (https://arxiv.org/abs/2006.11239), which are trained to reverse a gradual noising process, allowing the models to generate samples from the learned data distributions starting from random noise. DDIM-style deterministic sampling (https://arxiv.org/abs/2010.02502) is also supported. The models are also trained on continuous timesteps. They use the 'v' objective from Progressive Distillation for Fast Sampling of Diffusion Models (https://openreview.net/forum?id=TIdIXIpzhoI).

Dependencies

  • JAX (installation instructions)

  • dm-haiku, einops, numpy, optax, Pillow, tqdm (install with pip install)

  • CLIP_JAX (https://github.com/kingoflolz/CLIP_JAX), and its additional pip-installable dependencies: ftfy, regex, torch, torchvision (it does not need GPU PyTorch). If you git clone --recursive this repo, it should fetch CLIP_JAX automatically.

Model checkpoints:

  • Danbooru SFW 128x128, SHA-256 8551fe663dae988e619444efd99995775c7618af2f15ab5d8caf6b123513c334

  • ImageNet 128x128, SHA-256 4fc7c817b9aaa9018c6dbcbf5cd444a42f4a01856b34c49039f57fe48e090530

  • WikiArt 128x128, SHA-256 8fbe4e0206262996ff76d3f82a18dc67d3edd28631d4725e0154b51d00b9f91a

  • WikiArt 256x256, SHA-256 ebc6e77865bbb2d91dad1a0bfb670079c4992684a0e97caa28f784924c3afd81

Sampling

Example

If the model checkpoints are stored in checkpoints/, the following will generate an image:

./clip_sample.py "a friendly robot, watercolor by James Gurney" --model wikiart_256 --seed 0

If they are somewhere else, you need to specify the path to the checkpoint with --checkpoint.

Unconditional sampling

usage: sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT] [--eta ETA] --model
                 {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                 [--steps STEPS]

--batch-size: sample this many images at a time (default 1)

--checkpoint: manually specify the model checkpoint file

--eta: set to 0 for deterministic (DDIM) sampling, 1 (the default) for stochastic (DDPM) sampling, and in between to interpolate between the two. DDIM is preferred for low numbers of timesteps.

--model: specify the model to use

-n: sample until this many images are sampled (default 1)

--seed: specify the random seed (default 0)

--steps: specify the number of diffusion timesteps (default is 1000, can lower for faster but lower quality sampling)

CLIP guided sampling

CLIP guided sampling lets you generate images with diffusion models conditional on the output matching a text prompt.

usage: clip_sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT]
                      [--clip-guidance-scale CLIP_GUIDANCE_SCALE] [--eta ETA] --model
                      {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                      [--steps STEPS]
                      prompt

clip_sample.py has the same options as sample.py and these additional ones:

prompt: the text prompt to use

--clip-guidance-scale: how strongly the result should match the text prompt (default 1000)

Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022