History Aware Multimodal Transformer for Vision-and-Language Navigation

Related tags

Deep LearningVLN-HAMT
Overview

History Aware Multimodal Transformer for Vision-and-Language Navigation

This repository is the official implementation of History Aware Multimodal Transformer for Vision-and-Language Navigation. Project webpage: https://cshizhe.github.io/projects/vln_hamt.html

Vision-and-language navigation (VLN) aims to build autonomous visual agents that follow instructions and navigate in real scenes. In this work, we introduce a History Aware Multimodal Transformer (HAMT) to incorporate a long-horizon history into multimodal decision making. HAMT efficiently encodes all the past panoramic observations via a hierarchical vision transformer. It, then, jointly combines text, history and current observation to predict the next action. We first train HAMT end-to-end using several proxy tasks including single-step action prediction and spatial relation prediction, and then use reinforcement learning to further improve the navigation policy. HAMT achieves new state of the art on a broad range of VLN tasks, including VLN with fine-grained instructions (R2R, RxR) high-level instructions (R2R-Last, REVERIE), dialogs (CVDN) as well as long-horizon VLN (R4R, R2R-Back).

framework

Installation

  1. Install Matterport3D simulators: follow instructions here. We use the latest version (all inputs and outputs are batched).
export PYTHONPATH=Matterport3DSimulator/build:$PYTHONPATH
  1. Install requirements:
conda create --name vlnhamt python=3.8.5
conda activate vlnhamt
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
  1. Download data from Dropbox, including processed annotations, features and pretrained models. Put the data in `datasets' directory.

  2. (Optional) If you want to train HAMT end-to-end, you should download original Matterport3D data.

Extracting features (optional)

Scripts to extract visual features are in preprocess directory:

CUDA_VISIBLE_DEVICES=0 python preprocess/precompute_img_features_vit.py \
    --model_name vit_base_patch16_224 --out_image_logits \
    --connectivity_dir datasets/R2R/connectivity \
    --scan_dir datasets/Matterport3D/v1_unzip_scans \
    --num_workers 4 \
    --output_file datasets/R2R/features/pth_vit_base_patch16_224_imagenet.hdf5

Training with proxy tasks

Stage 1: Pretrain with fixed ViT features

NODE_RANK=0
NUM_GPUS=4
CUDA_VISIBLE_DEVICES='0,1,2,3' python -m torch.distributed.launch \
    --nproc_per_node=${NUM_GPUS} --node_rank $NODE_RANK \
    pretrain_src/main_r2r.py --world_size ${NUM_GPUS} \
    --model_config pretrain_src/config/r2r_model_config.json \
    --config pretrain_src/config/pretrain_r2r.json \
    --output_dir datasets/R2R/exprs/pretrain/cmt-vitbase-6tasks

Stage 2: Train ViT in an end-to-end manner

Change the config file as `pretrain_r2r_e2e.json'.

Fine-tuning for sequential action prediction

cd finetune_src
bash scripts/run_r2r.bash
bash scripts/run_r2r_back.bash
bash scripts/run_r2r_last.bash
bash scripts/run_r4r.bash
bash scripts/run_reverie.bash
bash scripts/run_cvdn.bash

Citation

If you find this work useful, please consider citing:

@InProceedings{chen2021hamt,
author       = {Chen, Shizhe and Guhur, Pierre-Louis and Schmid, Cordelia and Laptev, Ivan},
title        = {History Aware multimodal Transformer for Vision-and-Language Navigation},
booktitle    = {NeurIPS},
year         = {2021},
}

Acknowledgement

Some of the codes are built upon pytorch-image-models, UNITER and Recurrent-VLN-BERT. Thanks them for their great works!

Owner
Shizhe Chen
Shizhe Chen
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022