A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Overview

Stox

A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict the price. It uses a technical indicator algorithm developed by the Stox team for technical analysis. Check out how it works here.

Installation

Get it from PyPi:

pip3 install stox

Clone it from github:

git clone https://github.com/dopevog/stox.git
cd stox
python3 setup.py

Usage

Arguments:

    stock (str): stock ticker symbol
    output (str): 'list' or 'message' (Format Of Output)
    years (int or float): years of data to be considered
    chart (bool): generate performance plot

Returns:

List:

[company name, current price, predicted price, technical analysis, date (For)]

Message:

company name
current price
predicted price
technical analysis
data (for)

Examples:

Basic

import stox

script = input("Stock Ticker Symbol: ")
data = stox.stox.exec(script,'list')

print(data)
$ stox> python3 main.py
$ Stock Ticker Symbol: AAPL
$ ['Apple Inc.', 125.43000030517578, 124.91, 'Bearish (Already)', '2021-05-24']

Intermediate

= data[1] * 0.02: if data[3] == "Bullish (Starting)": df['Signal'] = "Buy" elif data[3] == "Bullish (Already)": df['Signal'] = "Up" elif data[2] - data[1] <= data[1] * -0.02: if data[3] == "Bearish (Starting)": df['Signal'] = "Sell" elif data[3] == "Bearish (Already)": df['Signal'] = "Down" else: df['Signal'] = "None" x = x+1 df.to_csv("output.csv") print("Done") ">
import stox
import pandas as pd

stock_list = pd.read_csv("SPX500.csv") 
df = stock_list 
number_of_stocks = 505 
x = 0
while x < number_of_stocks:
    ticker = stock_list.iloc[x]["Symbols"]
    data = stox.stox.exec(ticker,'list')
    df['Price'] = data[1] 
    df['Prediction'] = data[2]
    df['Analysis'] = data[3]
    df['DateFor'] = data[4]
    if data[2] - data[1]  >= data[1]  * 0.02:
        if data[3] == "Bullish (Starting)":
            df['Signal'] = "Buy"
        elif data[3] == "Bullish (Already)":
            df['Signal'] = "Up"
    elif data[2] - data[1]  <= data[1]  * -0.02:
        if data[3] == "Bearish (Starting)":
            df['Signal'] = "Sell"
        elif data[3] == "Bearish (Already)":
            df['Signal'] = "Down"
    else:
        df['Signal'] = "None"
    x = x+1
df.to_csv("output.csv") 
print("Done") 
$ stox> python3 main.py
$ Done

More Examples Including These Ones Can Be Found Here

Possible Implentations

  • Algorithmic Trading
  • Single Stock Analysis
  • Multistock Analysis
  • And Much More!

Credits

License

This Project Has Been MIT Licensed

You might also like...
 Warren - Stock Price Predictor
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

A machine learning project that predicts the price of used cars in the UK
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

 pure-predict: Machine learning prediction in pure Python
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks like scikit-learn and fasttext. It implements the predict methods of these frameworks in pure Python.

Comments
  • new

    new

    My name is Luis, I'm a big-data machine-learning developer, I'm a fan of your work, and I usually check your updates.

    I was afraid that my savings would be eaten by inflation. I have created a powerful tool that based on past technical patterns (volatility, moving averages, statistics, trends, candlesticks, support and resistance, stock index indicators). All the ones you know (RSI, MACD, STOCH, Bolinger Bands, SMA, DEMARK, Japanese candlesticks, ichimoku, fibonacci, williansR, balance of power, murrey math, etc) and more than 200 others.

    The tool creates prediction models of correct trading points (buy signal and sell signal, every stock is good traded in time and direction). For this I have used big data tools like pandas python, stock market libraries like: tablib, TAcharts ,pandas_ta... For data collection and calculation. And powerful machine-learning libraries such as: Sklearn.RandomForest , Sklearn.GradientBoosting, XGBoost, Google TensorFlow and Google TensorFlow LSTM.

    With the models trained with the selection of the best technical indicators, the tool is able to predict trading points (where to buy, where to sell) and send real-time alerts to Telegram or Mail. The points are calculated based on the learning of the correct trading points of the last 2 years (including the change to bear market after the rate hike).

    I think it could be useful to you, to improve, I would like to share it with you, and if you are interested in improving and collaborating I am also willing, and if not file it in the box.

    opened by Leci37 0
Releases(0.5)
Owner
Stox
Making Apps & Modules For The Stockmarket & To Make Life Easier!
Stox
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022