Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Overview

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution

visitors

Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte
Computer Vision Lab, ETH Zurich, Switzerland

[Paper] [Code] [Training Code]

Our work is the beginning rather than the end of real image super-resolution.


  • News (2021-08-31): We upload the training code.
  • News (2021-08-24): We upload the BSRGAN degradation model.
from utils import utils_blindsr as blindsr
img_lq, img_hq = blindsr.degradation_bsrgan(img, sf=4, lq_patchsize=72)
  • News (2021-07-23): After rejection by CVPR 2021, our paper is accepted by ICCV 2021. For the sake of fairness, we will not update the trained models in our camera-ready version. However, we may updata the trained models in github.
  • News (2021-05-18): Add trained BSRGAN model for scale factor 2.
  • News (2021-04): Our degradation model for face image enhancement: https://github.com/vvictoryuki/BSRGAN_implementation

Training

  1. Download KAIR: git clone https://github.com/cszn/KAIR.git
  2. Put your training high-quality images into trainsets/trainH or set "dataroot_H": "trainsets/trainH"
  3. Train BSRNet
    1. Modify train_bsrgan_x4_psnr.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    2. Training with DataParallel
    python main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json  --dist True
  4. Train BSRGAN
    1. Put BSRNet model (e.g., '400000_G.pth') into superresolution/bsrgan_x4_gan/models
    2. Modify train_bsrgan_x4_gan.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    3. Training with DataParallel
    python main_train_gan.py --opt options/train_bsrgan_x4_gan.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_bsrgan_x4_gan.json  --dist True
  5. Test BSRGAN model 'xxxxxx_E.pth' by modified main_test_bsrgan.py
    1. 'xxxxxx_E.pth' is more stable than 'xxxxxx_G.pth'

Some visual examples: oldphoto2; butterfly; comic; oldphoto3; oldphoto6; comic_01; comic_03; comic_04


Testing code

Main idea

Design a new degradation model to synthesize LR images for training:

  • 1) Make the blur, downsampling and noise more practical
    • Blur: two convolutions with isotropic and anisotropic Gaussian kernels from both the HR space and LR space
    • Downsampling: nearest, bilinear, bicubic, down-up-sampling
    • Noise: Gaussian noise, JPEG compression noise, processed camera sensor noise
  • 2) Degradation shuffle: instead of using the commonly-used blur/downsampling/noise-addition pipeline, we perform randomly shuffled degradations to synthesize LR images

Some notes on the proposed degradation model:

  • The degradation model is mainly designed to synthesize degraded LR images. Its most direct application is to train a deep blind super-resolver with paired LR/HR images. In particular, the degradation model can be performed on a large dataset of HR images to produce unlimited perfectly aligned training images, which typically do not suffer from the limited data issue of laboriously collected paired data and the misalignment issue of unpaired training data.

  • The degradation model tends to be unsuited to model a degraded LR image as it involves too many degradation parameters and also adopts a random shuffle strategy.

  • The degradation model can produce some degradation cases that rarely happen in real-world scenarios, while this can still be expected to improve the generalization ability of the trained deep blind super-resolver.

  • A DNN with large capacity has the ability to handle different degradations via a single model. This has been validated multiple times. For example, DnCNN is able to handle SISR with different scale factors, JPEG compression deblocking with different quality factors and denoising for a wide range of noise levels, while still having a performance comparable to VDSR for SISR. It is worth noting that even when the super-resolver reduces the performance for unrealistic bicubic downsampling, it is still a preferred choice for real SISR.

  • One can conveniently modify the degradation model by changing the degradation parameter settings and adding more reasonable degradation types to improve the practicability for a certain application.

Comparison

These no-reference IQA metrics, i.e., NIQE, NRQM and PI, do not always match perceptual visual quality [1] and the IQA metric should be updated with new SISR methods [2]. We further argue that the IQA metric for SISR should also be updated with new image degradation types, which we leave for future work.

[1] "NTIRE 2020 challenge on real-world image super-resolution: Methods and results." CVPRW, 2020.
[2] "PIPAL: a large-scale image quality assessment dataset for perceptual image restoration." ECCV, 2020.

More visual results on RealSRSet dataset

Left: real images | Right: super-resolved images with scale factor 4

Visual results on DPED dataset

Without using any prior information of DPED dataset for training, our BSRGAN still performs well.

Citation

@inproceedings{zhang2021designing,
  title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
  author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
  booktitle={arxiv},
  year={2021}
}

Acknowledgments

This work was partly supported by the ETH Zurich Fund (OK), a Huawei Technologies Oy (Finland) project, and an Amazon AWS grant.

Owner
Kai Zhang
Image Restoration; Inverse Problems
Kai Zhang
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022