[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Overview

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Derek Lim*, Felix Hohne*, Xiuyu Li*, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim

Published at NeurIPS 2021

Here are codes to load our proposed datasets, compute our measure of homophily, and train various graph machine learning models in our experimental setup. We include an implementation of the new graph neural network LINKX that we develop.

Organization

main.py contains the main full batch experimental scripts.

main_scalable.py contains the minibatching experimental scripts.

parse.py contains flags for running models with specific settings and hyperparameters.

dataset.py loads our datasets.

models.py contains implementations for graph machine learning models, though C&S (correct_smooth.py, cs_tune_hparams.py) are in separate files. Running several of the GNN models on larger datasets may require at least 24GB of VRAM. Our LINKX model is implemented in this file.

homophily.py contains functions for computing homophily measures, including the one that we introduce in our_measure.

experiments/ contains the bash files to reproduce full batch experiments.

scalable_experiments/ contains the bash files to reproduce minibatching experiments.

wiki_scraping/ contains the Python scripts to reproduce the "wiki" dataset by querying the Wikipedia API and cleaning up the data.

Datasets

Screenshot 2021-06-03 at 6 04 01 PM

As discussed in the paper, our proposed datasets are "genius", "twitch-gamer", "fb100", "pokec", "wiki", "arxiv-year", and "snap-patents", which can be loaded by load_nc_dataset in dataset.py by passing in their respective string name. Many of these datasets are included in the data/ directory, but wiki, twitch-gamer, snap-patents, and pokec are automatically downloaded from a Google drive link when loaded from dataset.py. The arxiv-year dataset is downloaded using OGB downloaders. load_nc_dataset returns an NCDataset, the documentation for which is also provided in dataset.py. It is functionally equivalent to OGB's Library-Agnostic Loader for Node Property Prediction, except for the fact that it returns torch tensors. See the OGB website for more specific documentation. Just like the OGB function, dataset.get_idx_split() returns fixed dataset split for training, validation, and testing.

When there are multiple graphs (as in the case of fb100), different ones can be loaded by passing in the sub_dataname argument to load_nc_dataset in dataset.py. In particular, fb100 consists of 100 graphs. We only include ["Amherst41", "Cornell5", "Johns Hopkins55", "Penn94", "Reed98"] in this repo, although others may be downloaded from the internet archive. In the paper we test on Penn94.

References

The datasets come from a variety of sources, as listed here:

  • Penn94. Traud et al 2012. Social Structure of Facebook Networks
  • pokec. Leskovec et al. Stanford Network Analysis Project
  • arXiv-year. Hu et al 2020. Open Graph Benchmark
  • snap-patents. Leskovec et al. Stanford Network Analysis Project
  • genius. Lim and Benson 2020. Expertise and Dynamics within Crowdsourced Musical Knowledge Curation: A Case Study of the Genius Platform
  • twitch-gamers. Rozemberczki and Sarkar 2021. Twitch Gamers: a Dataset for Evaluating Proximity Preserving and Structural Role-based Node Embeddings
  • wiki. Collected by the authors of this work in 2021.

Installation instructions

  1. Create and activate a new conda environment using python=3.8 (i.e. conda create --name non-hom python=3.8)
  2. Activate your conda environment
  3. Check CUDA version using nvidia-smi
  4. run bash install.sh cu110, replacing cu110 with your CUDA version (CUDA 11 -> cu110, CUDA 10.2 -> cu102, CUDA 10.1 -> cu101). We tested on Ubuntu 18.04, CUDA 11.0.

Running experiments

  1. Make sure a results folder exists in the root directory.
  2. Our experiments are in the experiments/ and scalable_experiments/ directory. There are bash scripts for running methods on single and multiple datasets. Please note that the experiments must be run from the root directory, e.g. (bash experiments/mixhop_exp.sh snap-patents). For instance, to run the MixHop experiments on arxiv-year, use:
bash experiments/mixhop_exp.sh arxiv-year

To run LINKX on pokec, use:

bash experiments/linkx_exp.sh pokec

To run LINK on Penn94, use:

bash experiments/link_exp.sh fb100 Penn94

To run GCN-cluster on twitch-gamers, use:

bash scalable_experiments/gcn_cluster.sh twitch-gamer

To run LINKX minibatched on wiki, use

bash scalable_experiments/linkx_exp.sh wiki

To run LINKX on Geom-GCN with full hyperparameter grid on chameleon, use

bash experiments/linkx_tuning.sh chameleon
Owner
Cornell University Artificial Intelligence
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022