Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Overview

Event Queue Dialect

Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Motivation

The main motivation of the event queue dialect is to efficiently estimate performance of programs running on heterogenous accelerators. The dialect is designed to bridge the gap between low-level hardware specific dialects and high-level dialects with little hardware specific information, thus facilitating custom lowering among different design choices. In particular, the EventQueue dialect supports modeling memory size constraints, bandwidth constraints, and processing time across a large number of heterogenous processors with distributed event-based control.

By and large, event queue dialect is design to estimate performance of concurrent devices. It supports:

  • Arbitrary hardware hierarchy and each hardware with its own properties.

  • Modeling data movement and buffer allocation that is critical to energy and efficiency estimation.

  • Model concurrency between heterogenous devices.

Check further documentation to see how the goals are achieved.

EQueue Dialect in MLIR Lowering Pipeline

lowering_pipeline

Event queue dialect is designed to do performance analysis.

Because there is a gap between high level dialect that has no structure information, and low level dialect that is too detail to analyze, event queue dialect bridges them.

The input for the event queue dialect is high level control dialect without structure and the output will be dialect describing detailed structure information.

In the lowering pipeline, equeue dialect is at the same level as gpu dialect. The difference is that existing gpu dialect assumes a synchronous gpu model and try to communicate with gpu.barrier among concurrent gpus, while equeue dialect models a more general design, where it allows any kinds of structure, thus allowing maximum flexibility. To describe the complexity of any possible structure in a flexible device like FPGA, equeue dialect develops a general semantics for asynchronous communication between concurrent devices.

How to Use

Dependency

The dependency of this project is MLIR. Because MLIR is project that frequently being updated. When I started the EQueue project, The latest stable version was 12-init. One needs checkout to the right version.

git clone https://github.com/llvm/llvm-project.git
git fetch --all --tags
git checkout tags/llvmorg-12-init -b 
   

   

and then follow MLIR quick start to build executable.

Quick Start

After git clone and cd the repo,

mkdir build
cp *.sh build/
cd build
#change LLVM_EXTERNAL_LIT and MLIR_DIR in run.sh to your local directory
sh config; sh run.sh
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir]

Debug Outputs

If one want to turn on debug outputs with -debug or debug-only when there are multiple debugging options

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug
# when there are multiple debugging options
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug-only=command_processor
# to redirect output to file
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug > & report

Visualization

By default equeue-opt will generate a Trace Event Format JSON file to test/Equeue/out.json . You can specify the output file name with -json

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -json [path-to-json-file.json]

The output JSON file can be viewed in chrome://tracing/

Below is the visualization of running test/EQueue/gpu.mlir

visualization

Examples

You may want to check on Examples on the convolution and the finite impulse response. Detailed explanation can be found in the example directory

Paper and Citation

The paper is accepted to HPCA 2022. We upload a preprint to Arxiv.

Contact

I am Zhijing at Cornell University. This project is originally my Xilinx internship project. I extend after the internship and now it is accepted by HPCA 2022. I will put the reference later. If getting to any trouble, you can contact me at [email protected]

Owner
Cornell Capra
Computer architecture & programming abstractions at Cornell University.
Cornell Capra
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022