This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

Overview

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator

This is a Pytorch implementation for the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator".

Requirement

  • python 3.7.3
  • pytorch 1.2.0
  • tensorflow 2.0.0
  • torchtext 0.4.0
  • torchvision 0.4.0
  • mnist

Data preparation

Training

  • Run 1_train.sh to train our proposed loss function RMCosGAN along with other loss functions on four datasets.

Appendix

Network Architectures

DCGAN Architecture for CIFAR-10, MNIST and STL-10 datasets

Operation Filter Units Non Linearity Normalization
Generator G(z)
Linear 512 None None
Trans.Conv2D 256 ReLU Batch
Trans.Conv2D 128 ReLU Batch
Trans.Conv2D 64 ReLU Batch
Trans.Conv2D 3 Tanh None
Discriminator D(x)
Conv2D 64 Leaky-ReLU Spectral
Conv2D 64 Leaky-ReLU Spectral
Conv2D 128 Leaky-ReLU Spectral
Conv2D 128 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 512 Leaky-ReLU Spectral

DCGAN Architecture for CAT dataset

Operation Filter Units Non Linearity Normalization
Generator G(z)
Trans.Conv2D 1024 ReLU Batch
Trans.Conv2D 512 ReLU Batch
Trans.Conv2D 256 ReLU Batch
Trans.Conv2D 128 ReLU Batch
Trans.Conv2D 3 Tanh None
Discriminator D(x)
Conv2D 128 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 512 Leaky-ReLU Spectral
Conv2D 1024 Leaky-ReLU Spectral

Experimental results

60 randomly-generated images with RMCosGAN at FID=31.34 trained on CIFAR-10 dataset

60 randomly-generated images with RMCosGAN at FID=13.17 trained on MNIST dataset

60 randomly-generated images with RMCosGAN FID=52.16 trained on STL-10 dataset

60 randomly-generated images with RMCosGAN at FID=9.48 trained on CAT dataset

Citation

Please cite our paper if RMCosGAN is used:

@article{RMCosGAN,
  title={An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator},
  author={Cuong Nguyen, Tien-Dung Cao, Tram Truong-Huu, Binh T.Nguyen},
  journal={},
  year={}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Cuong Nguyen ([email protected]),

Tien-Dung Cao ([email protected]),

Tram Truong-Huu ([email protected]),

Binh T.Nguyen ([email protected])

Owner
Cuong Nguyen
AI/DL researcher
Cuong Nguyen
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022