CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

Overview

CoMoGAN: Continuous Model-guided Image-to-Image Translation

Official repository.

Paper

CoMoGAN

CoMoGAN

CoMoGAN: continuous model-guided image-to-image translation [arXiv] | [supp] | [teaser]
Fabio Pizzati, Pietro Cerri, Raoul de Charette
Inria, Vislab Ambarella. CVPR'21 (oral)

If you find our work useful, please cite:

@inproceedings{pizzati2021comogan,
  title={{CoMoGAN}: continuous model-guided image-to-image translation},
  author={Pizzati, Fabio and Cerri, Pietro and de Charette, Raoul},
  booktitle={CVPR},
  year={2021}
}

Prerequisites

Tested with:

  • Python 3.7
  • Pytorch 1.7.1
  • CUDA 11.0
  • Pytorch Lightning 1.1.8
  • waymo_open_dataset 1.3.0

Preparation

The repository contains training and inference code for CoMo-MUNIT training on waymo open dataset. In the paper, we refer to this experiment as Day2Timelapse. All the models have been trained on a 32GB Tesla V100 GPU. We also provide a mixed precision training which should fit smaller GPUs as well (a usual training takes ~9GB).

Environment setup

We advise the creation of a new conda environment including all necessary packages. The repository includes a requirements file. Please create and activate the new environment with

conda env create -f requirements.yml
conda activate comogan

Dataset preparation

First, download the Waymo Open Dataset from the official website. The dataset is organized in .tfrecord files, which we preprocess and split depending on metadata annotations on time of day. Once you downloaded the dataset, you should run the dump_waymo.py script. It will read and unpack the .tfrecord files, also resizing the images for training. Please run

python scripts/dump_waymo.py --load_path path/of/waymo/open/training --save_path /path/of/extracted/training/images
python scripts/dump_waymo.py --load_path path/of/waymo/open/validation --save_path /path/of/extracted/validation/images

Running those commands should result in a similar directory structure:

root
  training
    Day
      seq_code_0_im_code_0.png
      seq_code_0_im_code_1.png
      ...
      seq_code_1_im_code_0.png
      ...
  Dawn/Dusk
      ...
  Night
      ...
  validation
    Day
      ...
    Dawn/Dusk
      ...
    Night
      ...

Pretrained weights

We release a pretrained set of weights to allow reproducibility of our results. The weights are downloadable from here. Once downloaded, unpack the file in the root of the project and test them with the inference notebook.

Training

The training routine of CoMoGAN is mainly based on the CycleGAN codebase, available with details in the official repository.

To launch a default training, run

python train.py --path_data path/to/waymo/training/dir --gpus 0

You can choose on which GPUs to train with the --gpus flag. Multi-GPU is not deeply tested but it should be managed internally by Pytorch Lightning. Typically, a full training requires 13GB+ of GPU memory unless mixed precision is set. If you have a smaller GPU, please run

python train.py --path_data path/to/waymo/training/dir --gpus 0 --mixed_precision

Please note that performances on mixed precision trainings are evaluated only qualitatively.

Experiment organization

In the training routine, an unique ID will be assigned to every training. All experiments will be saved in the logs folder, which is structured in this way:

logs/
  train_ID_0
    tensorboard/default/version_0
      checkpoints
        model_35000.pth
        ...
      hparams.yaml
      tb_log_file
  train_ID_1
    ...

In the checkpoints folder, all the intermediate checkpoints will be stored. hparams.yaml contains all the hyperparameters for a given run. You can launch a tensorboard --logdir train_ID instance on training directories to visualize intermediate outputs and loss functions.

To resume a previously stopped training, running

python train.py --id train_ID --path_data path/to/waymo/training/dir --gpus 0

will load the latest checkpoint from a given train ID checkpoints directory.

Extending the code

Command line arguments

We expose command line arguments to encourage code reusability and adaptability to other datasets or models. Right now, the available options thought for extensions are:

  • --debug: Disables logging and experiment saving. Useful for testing code modifications.
  • --model: Loads a CoMoGAN model. By default, it loads CoMo-MUNIT (code is in networks folder)
  • --data_importer: Loads data from a dataset. By default, it loads waymo for the day2timelapse experiment (code is in data folder).
  • --learning_rate: Modifies learning rate, default value for CoMo-MUNIT is 1e-4.
  • --scheduler_policy: You can choose among linear os step policy, taken respectively from CycleGAN and MUNIT training routines. Default is step.
  • --decay_iters_step: For step policy, how many iterations before reducing learning rate
  • --decay_step_gamma: Regulates how much to reduce the learning rate
  • --seed: Random seed initialization

The codebase have been rewritten almost from scratch after CVPR acceptance and optimized for reproducibility, hence the seed provided could give slightly different results from the ones reported in the paper.

Changing model and dataset requires extending the networks/base_model.py and data/base_dataset.py class, respectively. Please look into CycleGAN repository for further instructions.

Model, dataset and other options

Specific hyperparameters for different models, datasets or options not changing with high frequency are embedded in munch dictionaries in the relative classes. For instance, in networks/comomunit_model.py you can find all customizable options for CoMo-MUNIT. The same is valid for data/day2timelapse_dataset.py. The options folder includes additional options on checkpoint saving intervals and logging.

Inference

Once you trained a model, you can use the infer.ipynb notebook to visualize translation results. After having launched a notebook instance, you will be required to select the train_id of the experiment. The notebook is documented and it provides widgets for sequence, checkpoint and translation selection.

You can also use the translate.py script to translate all the images inside a directory or a sequence of images to another target directory.

python scripts/translate.py --load_path path/to/waymo/validation/day/dir --save_path path/to/saving/dir --phi 3.14

Will load image from the indicated path before translating it to a night style image due to the phi set to 3.14.

  • --phi: (𝜙) is the angle of the sun with a value between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]
  • --sequence: if you want to use only certain images, you can specify a name or a keyword contained in the image's name like --sequence segment-10203656353524179475
  • --checkpoint: if your folder logs contains more than one train_ID or if you want to select an older checkpoint, you should indicate the path to the checkpoint contained in the folder with the train_ID that you want like --checkpoint logs/train_ID_0/tensorboard/default/version_0/checkpoints/model_35000.pth

Docker

You will find a Dockerfile based on the nvidia/cuda:11.0.3-base-ubuntu18.04 image with all the dependencies that you need to run and test the code. To build it and to run it :

docker build -t notebook/comogan:1.0 .
docker run -it -v /path/to/your/local/datasets/:/datasets -p 8888:8888 --gpus '"device=0"' notebook/comogan:1.0
  • --gpus: gives you the possibility to only parse the GPU that you want to use, by default, all the available GPUs are parsed.
  • -v: mount the local directory that contained your dataset
  • -p: this option is only used for the infer.ipynb notebook. If you run the notebook on a remote server, you should also use this command to tunnel the output to your computer ssh [email protected] -NL 8888:127.0.0.1:8888
Owner
Codes from Computer Vision group of RITS Team, Inria
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022