Joint deep network for feature line detection and description

Related tags

Deep LearningSOLD2
Overview

SOLD² - Self-supervised Occlusion-aware Line Description and Detection

This repository contains the implementation of the paper: SOLD² : Self-supervised Occlusion-aware Line Description and Detection, J-T. Lin*, R. Pautrat*, V. Larsson, M. Oswald and M. Pollefeys (Oral at CVPR 2021).

SOLD² is a deep line segment detector and descriptor that can be trained without hand-labelled line segments and that can robustly match lines even in the presence of occlusion.

Demos

Matching in the presence of occlusion: demo_occlusion

Matching with a moving camera: demo_moving_camera

Usage

Installation

We recommend using this code in a Python environment (e.g. venv or conda). The following script installs the necessary requirements with pip:

pip install -r requirements.txt

Set your dataset and experiment paths (where you will store your datasets and checkpoints of your experiments) by modifying the file config/project_config.py. Both variables DATASET_ROOT and EXP_PATH have to be set.

You can download the version of the Wireframe dataset that we used during our training and testing here. This repository also includes some files to train on the Holicity dataset to add more outdoor images, but note that we did not extensively test this dataset and the original paper was based on the Wireframe dataset only.

Training your own model

All training parameters are located in configuration files in the folder config. Training SOLD² from scratch requires several steps, some of which taking several days, depending on the size of your dataset.

Step 1: Train on a synthetic dataset

The following command will create the synthetic dataset and start training the model on it:

python experiment.py --mode train --dataset_config config/synthetic_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_synth
Step 2: Export the raw pseudo ground truth on the Wireframe dataset with homography adaptation

Note that this step can take one to several days depending on your machine and on the size of the dataset. You can set the batch size to the maximum capacity that your GPU can handle.

python experiment.py --exp_name wireframe_train --mode export --resume_path <path to your previously trained sold2_synth> --model_config config/train_detector.yaml --dataset_config config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode train --export_batch_size 4

You can similarly perform the same for the test set:

python experiment.py --exp_name wireframe_test --mode export --resume_path <path to your previously trained sold2_synth> --model_config config/train_detector.yaml --dataset_config config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode test --export_batch_size 4
Step3: Compute the ground truth line segments from the raw data
cd postprocess
python convert_homography_results.py <name of the previously exported file (e.g. "wireframe_train.h5")> <name of the new data with extracted line segments (e.g. "wireframe_train_gt.h5")> ../config/export_line_features.yaml
cd ..

We recommend testing the results on a few samples of your dataset to check the quality of the output, and modifying the hyperparameters if need be. Using a detect_thresh=0.5 and inlier_thresh=0.99 proved to be successful for the Wireframe dataset in our case for example.

Step 4: Train the detector on the Wireframe dataset

We found it easier to pretrain the detector alone first, before fine-tuning it with the descriptor part. Uncomment the lines 'gt_source_train' and 'gt_source_test' in config/wireframe_dataset.yaml and fill them with the path to the h5 file generated in the previous step.

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe

Alternatively, you can also fine-tune the already trained synthetic model:

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_synth> --checkpoint_name <name of the best checkpoint>

Lastly, you can resume a training that was stopped:

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe --resume --resume_path <path to the  model to resume> --checkpoint_name <name of the last checkpoint>
Step 5: Train the full pipeline on the Wireframe dataset

You first need to modify the field 'return_type' in config/wireframe_dataset.yaml to 'paired_desc'. The following command will then train the full model (detector + descriptor) on the Wireframe dataset:

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_full_pipeline.yaml --exp_name sold2_full_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_wireframe> --checkpoint_name <name of the best checkpoint>

Pretrained models

We provide the checkpoints of two pretrained models:

How to use it

We provide a notebook showing how to use the trained model of SOLD². Additionally, you can use the model to export line features (segments and descriptor maps) as follows:

python export_line_features.py --img_list <list to a txt file containing the path to all the images> --output_folder <path to the output folder> --checkpoint_path <path to your best checkpoint,>

You can tune some of the line detection parameters in config/export_line_features.yaml, in particular the 'detect_thresh' and 'inlier_thresh' to adapt them to your trained model and type of images.

Results

Comparison of repeatability and localization error to the state of the art on the Wireframe dataset for an error threshold of 5 pixels in structural and orthogonal distances:

Structural distance Orthogonal distance
Rep-5 Loc-5 Rep-5 Loc-5
LCNN 0.434 2.589 0.570 1.725
HAWP 0.451 2.625 0.537 1.725
DeepHough 0.419 2.576 0.618 1.720
TP-LSD TP512 0.563 2.467 0.746 1.450
LSD 0.358 2.079 0.707 0.825
Ours with NMS 0.557 1.995 0.801 1.119
Ours 0.616 2.019 0.914 0.816

Matching precision-recall curves on the Wireframe and ETH3D datasets: pred_lines_pr_curve

Bibtex

If you use this code in your project, please consider citing the following paper:

@InProceedings{Pautrat_Lin_2021_CVPR,
    author = {Pautrat, Rémi* and Juan-Ting, Lin* and Larsson, Viktor and Oswald, Martin R. and Pollefeys, Marc},
    title = {SOLD²: Self-supervised Occlusion-aware Line Description and Detection},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}
Owner
Computer Vision and Geometry Lab
Computer Vision and Geometry Lab
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022