Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Overview

Part Detector Discovery

This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler published at ACCV 2014. If you would like to refer to this work, please cite the corresponding paper

@inproceedings{Simon14:PDD,
  author = {Marcel Simon and Erik Rodner and Joachim Denzler},
  booktitle = {Asian Conference on Computer Vision (ACCV)},
  title = {Part Detector Discovery in Deep Convolutional Neural Networks},
  year = {2014},
}

The following steps will guide you through the usage of the code.

1. Python Environment

Setup a python environment, preferably a virtual environment using e. g. virtual_env. The requirements file might install more than you need.

virtualenv pyhton-env && pip install -r requirements.txt

2. DeCAF Installation

Build and install decaf into this environment

source python-env/bin/activate
cd decaf-tools/decaf/
python setup.py build
python setup.py install

3. Pre-Trained ImageNet Model

Get the decaf ImageNet model:

cd decaf-tools/models/
bash get_model.sh

You now might need to adjust the path to the decaf model in decaf-tools/extract_grad_map.py, line 75!

4. Gradient Map Calculation

Now you can calculate the gradient maps using the following command. For a single image, use decaf-tools/extract_grad_map.py :

usage: extract_grad_map.py [-h] [--layers LAYERS [LAYERS ...]] [--limit LIMIT]
                           [--channel_limit CHANNEL_LIMIT]
                           [--images pattern [pattern ...]] [--outdir OUTDIR]

Calculate the gradient maps for an image.

optional arguments:
  -h, --help            show this help message and exit
  --layers LAYERS [LAYERS ...]
  --limit LIMIT         When calculating the gradient of the class scores,
                        calculate the gradient for the output elements with the
                        [limit] highest probabilities.
  --channel_limit CHANNEL_LIMIT
                        Sets the number of channels per layer you want to
                        calculate the gradient of.
  --images pattern [pattern ...]
			Absolute image path to the image. You can use wildcards.
  --outdir OUTDIR

For a list of absolute image paths call this script this way:

python extract_grad_map.py --images $(cat /path/to/imagelist.txt) --limit 1 --channel_limit 256 --layers probs pool5 --outdir /path/to/output/

The gradient maps are stored as Matlab .mat file and as png. In addition to these, the script also generates A html file to view the gradient maps and the input image. The gradient map is placed in the directory outdir/images'_parent_dir/image_filename/*. Be aware that approx. 45 MiB of storage is required per input image. For the whole CUB200-2011 dataset this means a total storage size of approx 800 GiB!

5. Part Localization

Apply the part localization using GMM fitting or maximum finding. Have a look in the part_localization folder for that. Open calcCUBPartLocs.m and adjust the paths. Now simply run calcCUBPartLocs(). This will create a file which has the same format as the part_locs.txt file of the CUB200-2011 dataset. You can use it for part-based classification.

6. Classification

We also provide the classification framework to use these part localizations and feature extraction with DeCAF. Go to the folder classification and open partEstimationDeepLearing.m. Have a look at line 40 and adjust the path such that it points to the correct file. Open settings.m and adjust the paths. Next, open settings.m and adjust the paths to liblinear and the virtual python environment. Now you can execute for example:

init
recRate = experimentParts('cub200_2011',200, struct('descriptor','plain','preprocessing_useMask','none','preprocessing_cropToBoundingbox',0), struct('partSelection',[1 2 3 9 14],'bothSymmetricParts',0,'descriptor','plain','trainPartLocation','est','preprocessing_relativePartSize',1.0/8,'preprocessing_cropToBoundingbox',0))

This will evaluate the classification performance on the standard train-test-split using the estimated part locations. Experiment parts has four parameters. The first one tell the function which dataset to use. You want to keep 'cub200_2011' here.

The second one is the number of classes to use, 3, 14 and 200 is supported here. Next is the setup for the global feature extraction. The only important setting is preprocessing_cropToBoundingbox. A value of 0 will tell the function not to use the ground truth bounding box during testing. You should leave the other two options as shown here.

The last one is the setup for the part features. You can select here, which parts you want to use and if you want to extract features from both symmetric parts, if both are visible. Since the part detector discovery associates some parts with the same channel, the location prediction will be the same for these. In this case, only select the parts which have unique channels here. In the example, the part 1, 2, 3, 9 and 14 are associated with different channels.

'trainPartLocation' tells the function, if grount-truth ('gt') or estimated ('est') part locations should be used for training. Since the discovered part detectors do not necessarily relate to semantic parts, 'est' usually is the better option here.

'preprocessing_relativePartSize' adjusts the size of patches, that are extracted at the estimated part locations. Please have a look at the paper for more information.

For the remaining options, you should keep everything as it is.

Acknowledgements

The classification framework is an extension of the excellent fine-grained recognition framework by Christoph Göring, Erik Rodner, Alexander Freytag and Joachim Denzler. You can find their project at https://github.com/cvjena/finegrained-cvpr2014.

Our work is based on DeCAF, a framework for convolutional neural networks. You can find the repository of the corresponding project at https://github.com/UCB-ICSI-Vision-Group/decaf-release/ .

License

Part Detector Discovery Framework by Marcel Simon, Erik Rodner and Joachim Denzler is licensed under the non-commercial license Creative Commons Attribution 4.0 International License. For usage beyond the scope of this license, please contact Marcel Simon.

You might also like...
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Open source code for Paper
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

Releases(v1.0)
Owner
Computer Vision Group Jena
Computer Vision Group Jena
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022