[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Overview

Deep Equilibrium Optical Flow Estimation

PWC

This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*, Zhengyang Geng*, Yash Savani and J. Zico Kolter.

A deep equilibrium (DEQ) flow estimator directly models the flow as a path-independent, “infinite-level” fixed-point solving process. We propose to use this implicit framework to replace the existing recurrent approach to optical flow estimation. The DEQ flows converge faster, require less memory, are often more accurate, and are compatible with prior model designs (e.g., RAFT and GMA).

Demo

We provide a demo video of the DEQ flow results below.

demo.mp4

Requirements

The code in this repo has been tested on PyTorch v1.10.0. Install required environments through the following commands.

conda create --name deq python==3.6.10
conda activate deq
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install tensorboard scipy opencv matplotlib einops termcolor -c conda-forge

Download the following datasets into the datasets directory.

Inference

Download the pretrained checkpoints into the checkpoints directory. Run the following command to infer over the Sintel train set and the KITTI train set.

bash val.sh

You may expect the following performance statistics of given checkpoints. This is a reference log.

Checkpoint Name Sintel (clean) Sintel (final) KITTI AEPE KITTI F1-all
DEQ-Flow-B 1.43 2.79 5.43 16.67
DEQ-Flow-H-1 1.45 2.58 3.97 13.41
DEQ-Flow-H-2 1.37 2.62 3.97 13.62
DEQ-Flow-H-3 1.36 2.62 4.02 13.92

Visualization

Download the pretrained checkpoints into the checkpoints directory. Run the following command to visualize the optical flow estimation over the KITTI test set.

bash viz.sh

Training

Download FlyingChairs-pretrained checkpoints into the checkpoints directory.

For the efficiency mode, you can run 1-step gradient to train DEQ-Flow-B via the following command. Memory overhead per GPU is about 5800 MB.

You may expect best results of about 1.46 (AEPE) on Sintel (clean), 2.85 (AEPE) on Sintel (final), 5.29 (AEPE) and 16.24 (F1-all) on KITTI. This is a reference log.

bash train_B_demo.sh

For training a demo of DEQ-Flow-H, you can run this command. Memory overhead per GPU is about 6300 MB. It can be further reduced to about 4200 MB per GPU when combined with --mixed-precision. You can further reduce the memory cost if you employ the CUDA implementation of cost volumn by RAFT.

You may expect best results of about 1.41 (AEPE) on Sintel (clean), 2.76 (AEPE) on Sintel (final), 4.44 (AEPE) and 14.81 (F1-all) on KITTI. This is a reference log.

bash train_H_demo.sh

To train DEQ-Flow-B on Chairs and Things, use the following command.

bash train_B.sh

For the performance mode, you can run this command to train DEQ-Flow-H using the C+T and C+T+S+K+H schedule. You may expect the performance of <1.40 (AEPE) on Sintel (clean), around 2.60 (AEPE) on Sintel (final), around 4.00 (AEPE) and 13.6 (F1-all) on KITTI. DEQ-Flow-H-1,2,3 are checkpoints from three runs.

Currently, this training protocol could entail resources slightly more than two 11 GB GPUs. In the near future, we will upload an implementation revision (of the DEQ models) that shall further reduce this overhead to less than two 11 GB GPUs.

bash train_H_full.sh

Code Usage

Under construction. We will provide more detailed instructions on the code usage (e.g., argparse flags, fixed-point solvers, backward IFT modes) in the coming days.

A Tutorial on DEQ

If you hope to learn more about DEQ models, here is an official NeurIPS tutorial on implicit deep learning. Enjoy yourself!

Reference

If you find our work helpful to your research, please consider citing this paper. :)

@inproceedings{deq-flow,
    author = {Bai, Shaojie and Geng, Zhengyang and Savani, Yash and Kolter, J. Zico},
    title = {Deep Equilibrium Optical Flow Estimation},
    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022}
}

Credit

A lot of the utility code in this repo were adapted from the RAFT repo and the DEQ repo.

Contact

Feel free to contact us if you have additional questions. Please drop an email through [email protected] (or Twitter).

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022