[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

Overview

RCIL

[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation
Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2, Ming-Ming Cheng1
1 College of Computer Science, Nankai University
2 The Hong Kong University of Science and Technology

Conference Paper

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Method

截屏2022-04-09 上午1 02 44

Update

  • Coming Soon add data folder
  • Coming Soon init code for Classification
  • Coming Soon add training scripts for ADE20K and cityscapes
  • 09/04/2022 init code for segmentation
  • 09/04/2022 init readme

Benchmark and Setting

There are two commonly used settings, disjoint and overlapped. In the disjoint setting, assuming we know all classes in the future, the images in the current training step do not contain any classes in the future. The overlapped setting allows potential classes in the future to appear in the current training images. We call each training on the newly added dataset as a step. Formally, X-Y denotes the continual setting in our experiments, where X denotes the number of classes that we need to train in the first step. In each subsequent learning step, the newly added dataset contains Y classes.

There are some settings reported in our paper. You can also try it on other any custom settings.

  • Continual Class Segmentation:

    1. PASCAL VOC 2012 dataset:
      • 15-5 overlapped
      • 15-5 disjoint
      • 15-1 overlapped
      • 15-1 disjoint
      • 10-1 overlapped
      • 10-1 disjoint
    2. ADE20K dataset:
      • 100-50 overlapped
      • 100-10 overlapped
      • 50-50 overlapped
      • 100-5 overlapped
  • Continual Domain Segmentation:

    1. Cityscapes:
      • 11-5
      • 11-1
      • 1-1
  • Extension Experiments on Continual Classification

    1. ImageNet-100
      • 50-10

Performance

  • Continual Class Segmentation on PASCAL VOC 2012
Method Pub. 15-5 disjoint 15-5 overlapped 15-1 disjoint 15-1 overlapped 10-1 disjoint 10-1 overlapped
LWF TPAMI 2017 54.9 55.0 5.3 5.5 4.3 4.8
ILT ICCVW 2019 58.9 61.3 7.9 9.2 5.4 5.5
MiB CVPR 2020 65.9 70.0 39.9 32.2 6.9 20.1
SDR CVPR 2021 67.3 70.1 48.7 39.5 14.3 25.1
PLOP CVPR 2021 64.3 70.1 46.5 54.6 8.4 30.5
Ours CVPR 2022 67.3 72.4 54.7 59.4 18.2 34.3
  • Continual Class Segmentation on ADE20K
Method Pub. 100-50 overlapped 100-10 overlapped 50-50 overlapped 100-5 overlapped
ILT ICCVW 2019 17.0 1.1 9.7 0.5
MiB CVPR 2020 32.8 29.2 29.3 25.9
PLOP CVPR 2021 32.9 31.6 30.4 28.7
Ours CVPR 2022 34.5 32.1 32.5 29.6
  • Continual Domain Segmentation on Cityscapes
Method Pub. 11-5 11-1 1-1
LWF TPAMI 2017 59.7 57.3 33.0
LWF-MC CVPR 2017 58.7 57.0 31.4
ILT ICCVW 2019 59.1 57.8 30.1
MiB CVPR 2020 61.5 60.0 42.2
PLOP CVPR 2021 63.5 62.1 45.2
Ours CVPR 2022 64.3 63.0 48.9

Dataset Prepare

  • PASCVAL VOC 2012
    sh data/download_voc.sh
  • ADE20K
    sh data/download_ade.sh
  • Cityscapes
    sh data/download_cityscapes.sh

Environment

  1. conda install --yes --file requirements.txt
  2. Install inplace-abn

Training

  1. Dowload pretrained model from ResNet-101_iabn to pretrained/
  2. We have prepared some training scripts in scripts/. You can train the model by
sh scripts/voc/rcil_10-1-overlap.sh

Inference

You can simply modify the bash file by add --test, like

CUDA_VISIBLE_DEVICES=${GPU} python3 -m torch.distributed.launch --master_port ${PORT} --nproc_per_node=${NB_GPU} run.py --data xxx ... --test

Reference

If this work is useful for you, please cite us by:

@inproceedings{zhangCvpr22ContinuSSeg,
  title={Representation Compensation Networks for Continual Semantic Segmentation},
  author={Chang-Bin Zhang and Jiawen Xiao and Xialei Liu and Yingcong Chen and Ming-Ming Cheng},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Connect

If you have any questions about this work, please feel easy to connect with us (zhangchbin ^ gmail.com).

Thanks

This code is heavily borrowed from [MiB] and [PLOP].

Awesome Continual Segmentation

There is a collection of AWESOME things about continual semantic segmentation, including papers, code, demos, etc. Feel free to pull request and star.

2022

  • Representation Compensation Networks for Continual Semantic Segmentation [CVPR 2022] [PyTorch]
  • Self-training for Class-incremental Semantic Segmentation [TNNLS 2022] [PyTorch]
  • Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation [TPAMI 2022] [[PyTorch]]

2021

  • PLOP: Learning without Forgetting for Continual Semantic Segmentation [CVPR 2021] [PyTorch]
  • Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations [CVPR2021] [PyTorch]
  • An EM Framework for Online Incremental Learning of Semantic Segmentation [ACM MM 2021] [PyTorch]
  • SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning [NeurIPS 2021] [PyTorch]

2020

2019

You might also like...
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

CVPR2022 paper
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Official code for
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Comments
  • Reproduce ADE20k

    Reproduce ADE20k

    Hi, thanks for sharing the code.

    I'm trying to reproduce the results for 100-50 ADE20k. Here are the hyper-parameters I used: --pod local --pod_factor 0.001 --pod_logits --classif_adaptive_factor --init_balanced --unce --unkd

    I get the all-mIoU=29.4%, which is much lower than the reported mIoU (34.5%). Could you please share with me the parameters you used to get the reported mIoU?

    opened by HieuPhan33 10
  • 15-1 Pascal-VOC Reproduce

    15-1 Pascal-VOC Reproduce

    Hi, I couldn't reproduce the results for 15-1 Pascal-VOC. I'm running the script voc/plop_15-1-overlap.sh. Since I have two GPUs with 24GB, I adjust the batch size to 12 and trained on 2 GPUs. This ensures the total batch size is 24 like your settings.

    Here are the results | | 0-15 | 16-20 | all | | ---- | ---- | --- | ---- | | Reproduce | 63.41 | 19.25 | 52.90 | | Reported | 70.60 | 23.70 | 59.40 |

    The results are far lower than the results reported in the paper. Could you please advise?

    opened by HieuPhan33 6
  • Reproduced results lower than the reported ones

    Reproduced results lower than the reported ones

    Hi, I directly ran the released codes without any modification. However, I found that the obtained results are lower than the reported ones by >1 percent point, especially the 10-1 setting with a large gap on the base (0-10) classes.

    Relevant log files are provided for your reference. Could you advise the possible reasons that may cause such a problem? Thanks a lot.

    | | 15-5 | | | 15-1 | | | 10-1 | | | |------------|------|-------|------|------|-------|------|------|-------|------| | | 0-15 | 16-20 | all | 0-15 | 16-20 | all | 0-10 | 11-20 | all | | Reported | 78.8 | 52.0 | 72.4 | 70.6 | 23.7 | 59.4 | 55.4 | 15.1 | 34.3 | | Reproduced | 76.7 | 48.4 | 70.0 | 69.0 | 20.5 | 57.4 | 38.0 | 13.4 | 26.3 |

    opened by Ze-Yang 3
  • Full results on Cityscapes

    Full results on Cityscapes

    Nice work! Could you publish the scripts and the corresponding results on Cityscapes? I failed to reproduce the experimental results reported in the paper. I set the batch size as 24. The initial learning rate is 0.02 for the first training step and 0.001 for the next continual learning steps. I train the model for each step with 50 epochs as the paper suggested.

    opened by XiaorongLi-95 4
Owner
Chang-Bin Zhang
Master student at Nankai University.
Chang-Bin Zhang
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022