《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Overview

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

This paper has been accpeted by Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

by Yan Wang*, Xiangyu Chen*, Yurong You, Li Erran, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao*

Figure

Dependencies

Usage

Prepare Datasets (Jupyter notebook)

We develop our method on these datasets:

  1. Configure dataset_path in config_path.py.

    Raw datasets will be organized as the following structure:

     dataset_path/
         | kitti/               # KITTI object detection 3D dataset
             | training/
             | testing/
         | argo/                # Argoverse dataset v1.1
             | train1/
             | train2/
             | train3/
             | train4/
             | val/
             | test/
         | nusc/                # nuScenes dataset v1.0
             | maps/
             | samples/
             | sweeps/
             | v1.0-trainval/
         | lyft/                # Lyft Level 5 dataset v1.02
             | v1.02-train/
         | waymo/               # Waymo dataset v1.0
             | training/
             | validation/
     
  2. Download all datasets.

    For KITTI, Argoverse and Waymo, we provide scripts for automatic download.

    cd scripts/
    python download.py [--datasets kitti+argo+waymo]

    nuScenes and Lyft need to downloaded manually.

  3. Convert all datasets to KITTI format.

    cd scripts/
    python -m pip install -r convert_requirements.txt
    python convert.py [--datasets argo+nusc+lyft+waymo]
  4. Split validation set

    We provide the train/val split used in our experiments under split folder.

    cd split/
    python replace_split.py
  5. Generate car subset

    We filter scenes and only keep those with cars.

    cd scripts/
    python gen_car_split.py

Statistical Normalization (Jupyter notebook)

  1. Compute car size statistics of each dataset. The computed statistics are stored as label_stats_{train/val/test}.json under KITTI format dataset root.

    cd stat_norm/
    python stat.py
  2. Generate rescaled datasets according to car size statistics. The rescaled datasets are stored under $dataset_path/rescaled_datasets by default.

    cd stat_norm/
    python norm.py [--path $PATH]

Training (To be updated)

We use PointRCNN to validate our method.

  1. Setup PointRCNN

    cd pointrcnn/
    ./build_and_install.sh
  2. Build datasets in PointRCNN format.

    cd pointrcnn/tools/
    python generate_multi_data.py
    python generate_gt_database.py --root ...
  3. Download the models pretrained on source domains from google drive using gdrive.

    cd pointrcnn/tools/
    gdrive download -r 14MXjNImFoS2P7YprLNpSmFBsvxf5J2Kw
  4. Adapt to a new domain by re-training with rescaled data.

    cd pointrcnn/tools/
    
    python train_rcnn.py --cfg_file ...

Inference

cd pointrcnn/tools/
python eval_rcnn.py --ckpt /path/to/checkpoint.pth --dataset $dataset --output_dir $output_dir 

Evaluation

We provide evaluation code with

  • old (based on bbox height) and new (based on distance) difficulty metrics
  • output transformation functions to locate domain gap
python evaluate/
python evaluate.py --result_path $predictions --dataset_path $dataset_root --metric [old/new]

Citation

@inproceedings{wang2020train,
  title={Train in germany, test in the usa: Making 3d object detectors generalize},
  author={Yan Wang and Xiangyu Chen and Yurong You and Li Erran and Bharath Hariharan and Mark Campbell and Kilian Q. Weinberger and Wei-Lun Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11713-11723},
  year={2020}
}
Owner
Xiangyu Chen
Ph.D. Student in Computer Science
Xiangyu Chen
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022