Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

Overview

MosaicOS

Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

Introduction

Many objects do not appear frequently enough in complex scenes (e.g., certain handbags in living rooms) for training an accurate object detector, but are often found frequently by themselves (e.g., in product images). Yet, these object-centric images are not effectively leveraged for improving object detection in scene-centric images.

We propose Mosaic of Object-centric images as Scene-centric images (MosaicOS), a simple and novel framework that is surprisingly effective at tackling the challenges of long-tailed object detection. Keys to our approach are three-fold: (i) pseudo scene-centric image construction from object-centric images for mitigating domain differences, (ii) high-quality bounding box imputation using the object-centric images’ class labels, and (iii) a multistage training procedure. Check our paper for further details:

MosaicOS: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

by Cheng Zhang*, Tai-Yu Pan*, Yandong Li, Hexiang Hu, Dong Xuan, Soravit Changpinyo, Boqing Gong, Wei-Lun Chao.

Mosaics

The script mosaic.py generates mosaic images and annotaions by given an annotation file in COCO format (for more information here). The following command will generate 2x2 mosaic images and the annotation file for COCO training dataset in OUTPUT_DIR/images/ and OUTPUT_DIR/annotation.json with 4 processors. --shuffle is to shuffle the order of images to synthesize and --drop-last is to drop the last couple of images if they are not enough for nrow * ncol. --demo 10 plots 10 synthesized images with annotated boxes in OUTPUT_DIR/demo/ for visualization.

 python mosaic.py --coco-file datasets/coco/annotations/instances_train2017.json --img-dir datasets/coco --output-dir output_mosaics --num-proc 4 --nrow 2 --ncol 2 --shuffle --drop-last --demo 10

*Note: In our work, we sythesize mosaics from object-centric images with pseudo bounding box to find-tune the pre-trained detector.

Pre-trained models

Our impelementation is based on Detectron2. All models are trained on LVIS training set with Repeated Factor Sampling (RFS).

LVIS v0.5 validation set

  • Object detection
Backbone Method APb APbr APbc APbf Download
R50-FPN Faster R-CNN 23.4 13.0 22.6 28.4 model
R50-FPN MosaicOS 25.0 20.2 23.9 28.3 model
  • Instance segmentation
Backbone Method AP APr APc APf APb Download
R50-FPN Mask R-CNN 24.4 16.0 24.0 28.3 23.6 model
R50-FPN MosaicOS 26.3 19.7 26.6 28.5 25.8 model

LVIS v1.0 validation set

  • Object detection
Backbone Method APb APbr APbc APbf Download
R50-FPN Faster R-CNN 22.0 10.6 20.1 29.2 model
R50-FPN MosaicOS 23.9 15.5 22.4 29.3 model
  • Instance segmentation
Backbone Method AP APr APc APf APb Download
R50-FPN Mask R-CNN 22.6 12.3 21.3 28.6 23.3 model
R50-FPN MosaicOS 24.5 18.2 23.0 28.8 25.1 model
R101-FPN Mask R-CNN 24.8 15.2 23.7 30.3 25.5 model
R101-FPN MosaicOS 26.7 20.5 25.8 30.5 27.4 model
X101-FPN Mask R-CNN 26.7 17.6 25.6 31.9 27.4 model
X101-FPN MosaicOS 28.3 21.8 27.2 32.4 28.9 model

Citation

Please cite with the following bibtex if you find it useful.

@inproceedings{zhang2021mosaicos,
  title={{MosaicOS}: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection},
  author={Zhang, Cheng and Pan, Tai-Yu and Li, Yandong and Hu, Hexiang and Xuan, Dong and Changpinyo, Soravit and Gong, Boqing and Chao, Wei-Lun},
  booktitle = {ICCV},
  year={2021}
}

Questions

Feel free to email us if you have any questions.

Cheng Zhang ([email protected]), Tai-Yu Pan ([email protected]), Wei-Lun Harry Chao ([email protected])

Owner
Cheng Zhang
Cheng Zhang
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022