Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

Overview

DocEnTR

Description

Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on top of the vit-pytorch vision transformers library. The proposed model can be used to enhance (binarize) degraded document images, as shown in the following samples.

Degraded Images Our Binarization
1 2
1 2

Download Code

clone the repository:

git clone https://github.com/dali92002/DocEnTR
cd DocEnTr

Requirements

  • install requirements.txt

Process Data

Data Path

We gathered the DIBCO, H-DIBCO and PALM datasets and organized them in one folder. You can download it from this link. After downloading, extract the folder named DIBCOSETS and place it in your desired data path. Means: /YOUR_DATA_PATH/DIBCOSETS/

Data Splitting

Specify the data path, split size, validation and testing sets to prepare your data. In this example, we set the split size as (256 X 256), the validation set as 2016 and the testing as 2018 while running the process_dibco.py file.

python process_dibco.py --data_path /YOUR_DATA_PATH/ --split_size 256 --testing_dataset 2018 --validation_dataset 2016

Using DocEnTr

Training

For training, specify the desired settings (batch_size, patch_size, model_size, split_size and training epochs) when running the file train.py. For example, for a base model with a patch_size of (16 X 16) and a batch_size of 32 we use the following command:

python train.py --data_path /YOUR_DATA_PATH/ --batch_size 32 --vit_model_size base --vit_patch_size 16 --epochs 151 --split_size 256 --validation_dataset 2016

You will get visualization results from the validation dataset on each epoch in a folder named vis+"YOUR_EXPERIMENT_SETTINGS" (it will be created). In the previous case it will be named visbase_256_16. Also, the best weights will be saved in the folder named "weights".

Testing on a DIBCO dataset

To test the trained model on a specific DIBCO dataset (should be matched with the one specified in Section Process Data, if not, run process_dibco.py again). Download the model weights (In section Model Zoo), or use your own trained model weights. Then, run the following command. Here, I test on H-DIBCO 2018, using the Base model with 8X8 patch_size, and a batch_size of 16. The binarized images will be in the folder ./vis+"YOUR_CONFIGS_HERE"/epoch_testing/

python test.py --data_path /YOUR_DATA_PATH/ --model_weights_path  /THE_MODEL_WEIGHTS_PATH/  --batch_size 16 --vit_model_size base --vit_patch_size 8 --split_size 256 --testing_dataset 2018

Demo

To be added ... (Using our Pretrained Models To Binarize A Single Degraded Image)

Model Zoo

In this section we release the pre-trained weights for all the best DocEnTr model variants trained on DIBCO benchmarks.

Testing data Models Patch size URL PSNR
0
DIBCO 2011
DocEnTr-Base 8x8 model 20.81
DocEnTr-Large 16x16 model 20.62
1
H-DIBCO 2012
DocEnTr-Base 8x8 model 22.29
DocEnTr-Large 16x16 model 22.04
2
DIBCO 2017
DocEnTr-Base 8x8 model 19.11
DocEnTr-Large 16x16 model 18.85
3
H-DIBCO 2018
DocEnTr-Base 8x8 model 19.46
DocEnTr-Large 16x16 model 19.47

Citation

If you find this useful for your research, please cite it as follows:

@article{souibgui2022docentr,
  title={DocEnTr: An end-to-end document image enhancement transformer},
  author={ Souibgui, Mohamed Ali and Biswas, Sanket and  Jemni, Sana Khamekhem and Kessentini, Yousri and Forn{\'e}s, Alicia and Llad{\'o}s, Josep and Pal, Umapada},
  journal={arXiv preprint arXiv:2201.10252},
  year={2022}
}

Authors

Conclusion

There should be no bugs in this code, but if there is, we are sorry for that :') !!

Owner
Mohamed Ali Souibgui
PhD Student in Computer Vision
Mohamed Ali Souibgui
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022