Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Overview

Multi-template MRI mouse brain atlas (both in vivo and ex vivo)

DOI

Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the original webpage)

List of atlases

  • FVB_NCrl: Brain MRI atlas of the wild-type FVB_NCrl mouse strain (used as the background strain for the rTg4510 which is a tauopathy model mice express a repressible form of human tau containing the P301L mutation that has been linked with familial frontotemporal dementia.)

  • NeAt: Brain MRI atlas of the whld-type C57BL/6J mouse strain. Atlas was created based on the original MRM NeAt mouse brain atlas (template images reoriented and bias-corrected, left/right structure label seperated, and 4th ventricle manual segmentation added).

  • Tc1 Cerebellum: TC1 mouse cerebellar cortical sublayer lobules.This mouse cerebellar atlas can be used for mouse cerebellar morphometry.

Sample images of atlas

These atlases can be used by the corresponding automatic mouse brain segmentation tools, which can use the in-vivo/ex-vivo atlas here to perform multi-atlas structural parellation based on non-rigid registration and label fusion.

Citation

  • If you use the segmented brain structure, or use the atlas along with the automatic mouse brain MRI segmentation tools, we ask you to kindly cite the following papers:

    • Ma D, Cardoso MJ, Modat M, Powell N, Wells J, Holmes H, Wiseman F, Tybulewicz V, Fisher E, Lythgoe MF, Ourselin S. Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. PloS one. 2014 Jan 27;9(1):e86576. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086576

    • Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan J, Ismail O, Johnson RA, O’Neill MJ, Collins EC, Mirza F. Beg, Karteek Popuri, Mark F. Lythgoe, and Sebastien Ourselin Study the longitudinal in vivo and cross-sectional ex vivo brain volume difference for disease progression and treatment effect on mouse model of tauopathy using automated MRI structural parcellation. Frontiers in Neuroscience. 2019;13:11. https://www.frontiersin.org/articles/10.3389/fnins.2019.00011

  • If you use the brain MR images of the FVB_NCrl mouse strain (the wildtype background of rTg4510), we ask you to kindly cite the following papers:

  • If you're using the mouse MRI T2* Active Starining Cerebellar atlas, we ask you to please kindly cite the following papers:

    • Ma, D., Cardoso, M. J., Zuluaga, M. A., Modat, M., Powell, N. M., Wiseman, F. K., Cleary, J. O., Sinclair, B., Harrison, I. F., Siow, B., Popuri, K., Lee, S., Matsubara, J. A., Sarunic, M. V, Beg, M. F., Tybulewicz, V. L. J., Fisher, E. M. C., Lythgoe, M. F., & Ourselin, S. (2020). Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI. NeuroImage, 117271. https://doi.org/https://doi.org/10.1016/j.neuroimage.2020.117271
    • Ma, D., Cardoso, M. J., Zuluaga, M. A., Modat, M., Powell, N., Wiseman, F., Tybulewicz, V., Fisher, E., Lythgoe, M. F., & Ourselin, S. (2015). Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum. In Medical Image Computing and Computer Assisted Intervention 2015 (pp. 644–651). https://doi.org/10.1007/978-3-319-24574-4_77

Reference

  • For the original information of the NeAt atlas, please please refer to the website: http://brainatlas.mbi.ufl.edu/, and the following two reference papers:
    • Ma Yu, Smith David, Hof Patrick R, Foerster Bernd, Hamilton Scott, Blackband Stephen J, Yu Mei, Benveniste Helene In Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy. Front. Neuroanat. 2, 1 (2008).
    • Ma Yu, Hof P R, Grant S C, Blackband S J, Bennett R, Slatest L, McGuigan M D, Benveniste H A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135, 1203–15 (2005).

Funding

The works in this repositories received multiple funding from EPSRC, UCL Leonard Wolfson Experimental Neurology center, Medical Research Council (MRC), the NIHR Biomedical Research Unit (Dementia) at UCL and the National Institute for Health Research University College London Hospitals Biomedical Research center, the UK Regenerative Medicine Platform Safety Hub, and the Kings College London and UCL Comprehensive Cancer Imaging center CRUK & EPSRC in association with the MRC and DoH (England), UCL Faculty of Engineering funding scheme, Alzheimer Society Reseasrch Program from Alzheimer Society Canada, NSERC, CIHR, MSFHR Canada, Eli Lilly and Company, Wellcome Trust, the Francis Crick Institute, Cancer Research UK, and University of Melbourne McKenzie Fellowship.

You might also like...
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Code from the paper
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

This repo contains research materials released by members of the Google Brain team in Tokyo.
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Comments
  • NeAt parcellation labels

    NeAt parcellation labels

    @dancebean

    I was looking at the parcellation labels for the NeAt atlas in the docs folder and noticed a discrepancy between structure_label_list.csv and structure_label_list_hemisphere_separated.csv.

    In structure_label_list.csv, lines 23-24 indicate that the right hemispheric ROIs are labeled #1-20. In structure_label_list_hemisphere_separated.csv the right hemisphere is #21-40.

    Can you clarify which is correct?

    opened by araikes 0
Releases(1.0)
  • 1.0(Aug 24, 2020)

    Published along with the journal paper: Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI https://doi.org/10.1016/j.neuroimage.2020.117271

    Source code(tar.gz)
    Source code(zip)
  • 0.2(Nov 14, 2019)

Owner
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022