50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

Overview

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm still looking for new contributors! Please help make HyperLearn no1!!]

drawing

HyperLearn is what drives Umbra's AI engines. It is open source to everyone, everywhere, and we hope humanity can rise to the stars.

[Notice - I will be updating the package monthly or bi-weekly due to other commitments]


drawing https://hyperlearn.readthedocs.io/en/latest/index.html

Faster, Leaner GPU Sklearn, Statsmodels written in PyTorch

GitHub issues Github All Releases

50%+ Faster, 50%+ less RAM usage, GPU support re-written Sklearn, Statsmodels combo with new novel algorithms.

HyperLearn is written completely in PyTorch, NoGil Numba, Numpy, Pandas, Scipy & LAPACK, and mirrors (mostly) Scikit Learn. HyperLearn also has statistical inference measures embedded, and can be called just like Scikit Learn's syntax (model.confidence_interval_) Ongoing documentation: https://hyperlearn.readthedocs.io/en/latest/index.html

I'm also writing a mini book! A sneak peak: drawing

drawing

Comparison of Speed / Memory

Algorithm n p Time(s) RAM(mb) Notes
Sklearn Hyperlearn Sklearn Hyperlearn
QDA (Quad Dis A) 1000000 100 54.2 22.25 2,700 1,200 Now parallelized
LinearRegression 1000000 100 5.81 0.381 700 10 Guaranteed stable & fast

Time(s) is Fit + Predict. RAM(mb) = max( RAM(Fit), RAM(Predict) )

I've also added some preliminary results for N = 5000, P = 6000 drawing

Since timings are not good, I have submitted 2 bug reports to Scipy + PyTorch:

  1. EIGH very very slow --> suggesting an easy fix #9212 https://github.com/scipy/scipy/issues/9212
  2. SVD very very slow and GELS gives nans, -inf #11174 https://github.com/pytorch/pytorch/issues/11174

Help is really needed! Message me!


Key Methodologies and Aims

1. Embarrassingly Parallel For Loops

2. 50%+ Faster, 50%+ Leaner

3. Why is Statsmodels sometimes unbearably slow?

4. Deep Learning Drop In Modules with PyTorch

5. 20%+ Less Code, Cleaner Clearer Code

6. Accessing Old and Exciting New Algorithms


1. Embarrassingly Parallel For Loops

  • Including Memory Sharing, Memory Management
  • CUDA Parallelism through PyTorch & Numba

2. 50%+ Faster, 50%+ Leaner

3. Why is Statsmodels sometimes unbearably slow?

  • Confidence, Prediction Intervals, Hypothesis Tests & Goodness of Fit tests for linear models are optimized.
  • Using Einstein Notation & Hadamard Products where possible.
  • Computing only what is necessary to compute (Diagonal of matrix and not entire matrix).
  • Fixing the flaws of Statsmodels on notation, speed, memory issues and storage of variables.

4. Deep Learning Drop In Modules with PyTorch

  • Using PyTorch to create Scikit-Learn like drop in replacements.

5. 20%+ Less Code, Cleaner Clearer Code

  • Using Decorators & Functions where possible.
  • Intuitive Middle Level Function names like (isTensor, isIterable).
  • Handles Parallelism easily through hyperlearn.multiprocessing

6. Accessing Old and Exciting New Algorithms

  • Matrix Completion algorithms - Non Negative Least Squares, NNMF
  • Batch Similarity Latent Dirichelt Allocation (BS-LDA)
  • Correlation Regression
  • Feasible Generalized Least Squares FGLS
  • Outlier Tolerant Regression
  • Multidimensional Spline Regression
  • Generalized MICE (any model drop in replacement)
  • Using Uber's Pyro for Bayesian Deep Learning

Goals & Development Schedule

Will Focus on & why:

1. Singular Value Decomposition & QR Decomposition

* SVD/QR is the backbone for many algorithms including:
    * Linear & Ridge Regression (Regression)
    * Statistical Inference for Regression methods (Inference)
    * Principal Component Analysis (Dimensionality Reduction)
    * Linear & Quadratic Discriminant Analysis (Classification & Dimensionality Reduction)
    * Pseudoinverse, Truncated SVD (Linear Algebra)
    * Latent Semantic Indexing LSI (NLP)
    * (new methods) Correlation Regression, FGLS, Outlier Tolerant Regression, Generalized MICE, Splines (Regression)

On Licensing: HyperLearn is under a GNU v3 License. This means:

  1. Commercial use is restricted. Only software with 0 cost can be released. Ie: no closed source versions are allowed.
  2. Using HyperLearn must entail all of the code being avaliable to everyone who uses your public software.
  3. HyperLearn is intended for academic, research and personal purposes. Any explicit commercialisation of the algorithms and anything inside HyperLearn is strictly prohibited.

HyperLearn promotes a free and just world. Hence, it is free to everyone, except for those who wish to commercialise on top of HyperLearn. Ongoing documentation: https://hyperlearn.readthedocs.io/en/latest/index.html [As of 2020, HyperLearn's license has been changed to BSD 3]

Owner
Daniel Han-Chen
Fast energy efficient machine learning algorithms
Daniel Han-Chen
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022