darija <-> english dictionary

Related tags

Deep Learningdataset
Overview

darija-dictionary

Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect. Hence, darija (Moroccan dialect) should be an active player in the domain of Natural Language Processing (NLP).

However, it turns out that step 0 in any serious engagement with darija in NLP will consist of translating its vocabulary to the widely used and most documented language in this field, namely English.

This open source project aims to be a reference in addressing this issue. We hope for the contribution of the Moroccan IT community in order to build up the largest dataset of darija-english vocabulary which will serve as a pedestal for any future application of NLP to benefit Moroccan people.


DODa video


How to contribute

We've made a tutorial for you in DODa's website


Guidelines / Recommendations

  • 3ndk ح dir ح xD (shout-out to this guy 😆 ), often try to use:
darija 3 7 9 8 2 - 'a' - 'i' 5 - 'kh'
arabic ع ح ق ه همزة خ
  • Try to use capitalization to differentiate between the following letters:
t T s S d D
ت ط س ص د ض
  • Arabic characters with two-letters Latin equivalent:
Arabic alphabet ش غ خ
Latin alphabet ch gh kh
  • Double characters to refer to the emphasis or "الشدة":
darija 7mam 7mmam
english pigeons bathroom
  • We usually don't add "e" in the end of darija words : louz instead of louze

  • We usually don't use "Z" or "th" for ظ ، ذ ، ث , because we generally don't use these letters in darija (except in northern Morocco, but for the sake of simplicity, we are focusing primarily on standard darija)

  • We do NOT use apostrophes. In fact, since we are working on csv files, apostrophes will break off words

  • We use spaces as word delimiters, not _ nor - : thank you instead of thank_you

  • Respect the number of columns in every row you add, you can use empty quotation marks "" in case you don't have extra variations

  • In every row, always start with the most used form (in your opinion of course) of the word in question

  • For future use of this dataset to train deep neural networks, try to reserve each row to similar variations of the same word. For instance, "sou9" and "marchi" both translate to "market", yet it's better to separate them into two different rows:

"sou9","souk","souq","market"

"marchi","","","market"

  • verbs.csv: The darija translation is reserved to the past tense of the third pronoun "he", whereas the other pronouns and tenses are handled in separate files. The English translation present the basic form (or root) of the English verb.

"ghnna","ghenna","ghanna","","","","sing"

  • masculine_feminine_plural.csv: If it does exist, feminine-plural translation column is for nouns. Regarding adjectives feminine-plural = feminine.

Citation

@misc{outchakoucht2021moroccan,
      title={Moroccan Dialect -Darija- Open Dataset},
      author={Aissam Outchakoucht and Hamza Es-Samaali},
      year={2021},
      eprint={2103.09687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DODa
Darija Open Dataset
DODa
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022