Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Overview

Divide and Remaster Utility Tools

CFP Icon

Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

The DnR dataset is build from three, well-established, audio datasets; Librispeech, Free Music Archive (FMA), and Freesound Dataset 50k (FSD50K). We offer our dataset in both 16kHz and 44.1kHz sampling-rate along time-stamped annotations for each of the classes (genre for 'music', audio-tags for 'sound-effects', and transcription for 'speech'). We provide below more informations on how the dataset is build and what it's consists of exactly. We also go over the process of building the dataset from scratch for the cases it needs to.



Dataset Overview

The Divide and Remaster (DnR) dataset is a dataset aiming at providing research support for a relatively unexplored case of source separation with mixtures involving music, speech, and sound-effects (SFX) as their sources. The dataset is build from three, well-established, datasets. Consequently if one wants to build DnR from scratch, the aforementioned datasets will have to be downloaded first. Alternatively, DnR is also available on Zenodo

Get the DnR Dataset

In order to obtain DnR, several options are available depending on the task at hand:

Download

  • DnR-HQ (44.1kHz) is available on Zenodo at the following or simply run:
link to the Zenodo dataset coming soon ...
  • Alternatively, if DnR-16kHz is needed, please first download DnR-HQ locally. You can then downsample the dataset (either in-place or not) by cloning the dnr-utils repository and running:
python dnr_utils.py --task=downsample --inplace=True

Building DnR From Scratch

In the section, we go over the DnR building process. Since DnR is directly drawn from *FSD50K*, *LibriSpeech*/*LibriVox*, and *FMA, we first need to download these datasets. Please head to the following links for more details on how to get them:

Datasets Downloads

FSD50K
FMA-Medium Set
LibriSpeech/LibriVox



Please note that for FMA, the medium set only is required. In addition to the audio files, the metadata should also be downloaded. For LibriSpeech DnR uses dev-clean, test-clean, and train-clean-100. DnR will use the folder structure as well as metadata from LibriSpeech, but ultimately will build the LibriSpeech-HQ dataset off the original LibriVox mp3s, which is why we need them both for building DnR.

After download, all four datasets are expected to be found in the same root directory. Our root tree may look something like that. As the standardization script will look for specific file name, please make sure that all directory names conform to the ones described below:

root
├── fma-medium
│   ├── fma_metadata
│   │   ├── genres.csv
│   │   └── tracks.csv
│   ├── 008
│   ├── 008
│   ├── 009
│   └── 010
│   └── ...
├── fsd50k
│   ├── FSD50K.dev_audio
│   ├── FSD50K.eval_audio
│   └── FSD50K.ground_truth
│   │   ├── dev.csv
│   │   ├── eval.csv
│   │   └── vocabulary.csv
├── librispeech
│   ├── dev-clean
│   ├── test-clean
│   └── train-clean-100
└── librivox
    ├── 14
    ├── 16
    └── 17
    └── ...

Datasets Standardization

Once all four datasets are downloaded, some standardization work needs to be taken care of. The standardization process can be be executed by running standardization.py, which can be found in the dnr-utils repository. Prior to running the script you may want to install all the necessary dependencies included as part of the requirement.txt with pip install -r requirements.txt. Note: pydub uses ffmpeg under its hood, a system install of fmmpeg is thus required. Please see pydub's install instructions for more information. The standardization command may look something like:

python standardization.py --fsd50k-path=./FSD50K --fma-path=./FMA --librivox-path=./LibriVox --librispeech-path=./LibiSpeech  --dest-dir=./dest --validate-audio=True

DnR Dataset Compilation

Once the three resulting datasets are standardized, we are ready to finally compile DnR. At this point you should already have cloned the dnr-utils repository, which contains two key files:

  • config.py contains some configuration entries needed by the main script builder. You want to set all the appropriate paths pointing to your local datasets and ground truth files in there.
  • The compilation for a given set (here, train, val, and eval) can be executed with compile_dataset.py, for example by running the following commands for each set:
python compile_dataset.py with cfg.train
python compile_dataset.py with cfg.val
python compile_dataset.py with cfg.eval

Known Issues

Some known bugs and issues that we're aware. if not listed below, feel free to open a new issue here:

  • If building from scratch, pydub will fail at reading 15 mp3 files from the FMA medium-set and will return the following error: mp3 @ 0x559b8b084880] Failed to read frame size: Could not seek to 1026.

  • If building DnR from scratch, the script may return the following error, coming from pyloudnorm: Audio must be have length greater than the block size. That's because some audio segment, especially SFX events, may be shorter than 0.2 seconds, which is the minimum sample length (window) required by pyloudnorm for normalizing the audio. We just ignore these segments.


Contact and Support

Have an issue, concern, or question about DnR or its utility tools ? If so, please open an issue here

For any other inquiries, feel free to shoot an email at: [email protected], my name is Darius Petermann ;)


Owner
Darius Petermann
Signal Processing and Machine Learning for Audio
Darius Petermann
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022