A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Overview

Aboleth

circleCI Documentation Status

A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes inference [2].

Features

Some of the features of Aboleth:

  • Bayesian fully-connected, embedding and convolutional layers using SGVB [2] for inference.
  • Random Fourier and arc-cosine features for approximate Gaussian processes. Optional variational optimisation of these feature weights as per [1].
  • Imputation layers with parameters that are learned as part of a model.
  • Noise Contrastive Priors [3] for better out-of-domain uncertainty estimation.
  • Very flexible construction of networks, e.g. multiple inputs, ResNets etc.
  • Compatible and interoperable with other neural net frameworks such as Keras (see the demos for more information).

Why?

The purpose of Aboleth is to provide a set of high performance and light weight components for building Bayesian neural nets and approximate (deep) Gaussian process computational graphs. We aim for minimal abstraction over pure TensorFlow, so you can still assign parts of the computational graph to different hardware, use your own data feeds/queues, and manage your own sessions etc.

Here is an example of building a simple Bayesian neural net classifier with one hidden layer and Normal prior/posterior distributions on the network weights:

import tensorflow as tf
import aboleth as ab

# Define the network, ">>" implements function composition,
# the InputLayer gives a kwarg for this network, and
# allows us to specify the number of samples for stochastic
# gradient variational Bayes.
net = (
    ab.InputLayer(name="X", n_samples=5) >>
    ab.DenseVariational(output_dim=100) >>
    ab.Activation(tf.nn.relu) >>
    ab.DenseVariational(output_dim=1)
)

X_ = tf.placeholder(tf.float, shape=(None, D))
Y_ = tf.placeholder(tf.float, shape=(None, 1))

# Build the network, nn, and the parameter regularization, kl
nn, kl = net(X=X_)

# Define the likelihood model
likelihood = tf.distributions.Bernoulli(logits=nn).log_prob(Y_)

# Build the final loss function to use with TensorFlow train
loss = ab.elbo(likelihood, kl, N)

# Now your TensorFlow training code here!
...

At the moment the focus of Aboleth is on supervised tasks, however this is subject to change in subsequent releases if there is interest in this capability.

Installation

NOTE: Aboleth is a Python 3 library only. Some of the functionality within it depends on features only found in python 3. Sorry.

To get up and running quickly you can use pip and get the Aboleth package from PyPI:

$ pip install aboleth

For the best performance on your architecture, we recommend installing TensorFlow from sources.

Or, to install additional dependencies required by the demos:

$ pip install aboleth[demos]

To install in develop mode with packages required for development we recommend you clone the repository from GitHub:

$ git clone [email protected]:data61/aboleth.git

Then in the directory that you cloned into, issue the following:

$ pip install -e .[dev]

Getting Started

See the quick start guide to get started, and for more in depth guide, have a look at our tutorials. Also see the demos folder for more examples of creating and training algorithms with Aboleth.

The full project documentation can be found on readthedocs.

References

[1] (1, 2) Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature Expansions for Deep Gaussian Processes. In ICML, 2017.
[2] (1, 2) Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
[3] Hafner, D., Tran, D., Irpan, A., Lillicrap, T. and Davidson, J., 2018. Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors. arXiv preprint arXiv:1807.09289.

License

Copyright 2017 CSIRO (Data61)

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Gradient Institute
Non-profit research institute building ethical AI systems
Gradient Institute
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022