Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Overview

Neural Network Models for Joint POS Tagging and Dependency Parsing

jptdpv2

Implementations of joint models for POS tagging and dependency parsing, as described in my papers:

  1. Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint POS tagging and dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 81-91. [.bib] (jPTDP v2.0)
  2. Dat Quoc Nguyen, Mark Dras and Mark Johnson. 2017. A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 134-142. [.bib] (jPTDP v1.0)

This github project currently supports jPTDP v2.0, while v1.0 can be found in the release section. Please cite paper [1] when jPTDP is used to produce published results or incorporated into other software. I would highly appreciate to have your bug reports, comments and suggestions about jPTDP. As a free open-source implementation, jPTDP is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Installation

jPTDP requires the following software packages:

  • Python 2.7

  • DyNet v2.0

    $ virtualenv -p python2.7 .DyNet
    $ source .DyNet/bin/activate
    $ pip install cython numpy
    $ pip install dynet==2.0.3
    

Once you installed the prerequisite packages above, you can clone or download (and then unzip) jPTDP. Next sections show instructions to train a new joint model for POS tagging and dependency parsing, and then to utilize a pre-trained model.

NOTE: jPTDP is also ported to run with Python 3.4+ by Santiago Castro. Also note that pre-trained models I provide in the last section would not work with this ported version (see a discussion). Thus, you may want to retrain jPTDP if using this ported version.

Train a joint model

Suppose that SOURCE_DIR is simply used to denote the source code directory. Similar to files train.conllu and dev.conllu in folder SOURCE_DIR/sample or treebanks in the Universal Dependencies (UD) project, the training and development files are formatted following 10-column data format. For training, jPTDP will only use information from columns 1 (ID), 2 (FORM), 4 (Coarse-grained POS tags---UPOSTAG), 7 (HEAD) and 8 (DEPREL).

To train a joint model for POS tagging and dependency parsing, you perform:

SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 [--dynet-mem <int>] [--epochs <int>] [--lstmdims <int>] [--lstmlayers <int>] [--hidden <int>] [--wembedding <int>] [--cembedding <int>] [--pembedding <int>] [--prevectors <path-to-pre-trained-word-embedding-file>] [--model <String>] [--params <String>] --outdir <path-to-output-directory> --train <path-to-train-file>  --dev <path-to-dev-file>

where hyper-parameters in [] are optional:

  • --dynet-mem: Specify DyNet memory in MB.
  • --epochs: Specify number of training epochs. Default value is 30.
  • --lstmdims: Specify number of BiLSTM dimensions. Default value is 128.
  • --lstmlayers: Specify number of BiLSTM layers. Default value is 2.
  • --hidden: Specify size of MLP hidden layer. Default value is 100.
  • --wembedding: Specify size of word embeddings. Default value is 100.
  • --cembedding: Specify size of character embeddings. Default value is 50.
  • --pembedding: Specify size of POS tag embeddings. Default value is 100.
  • --prevectors: Specify path to the pre-trained word embedding file for initialization. Default value is "None" (i.e. word embeddings are randomly initialized).
  • --model: Specify a name for model parameters file. Default value is "model".
  • --params: Specify a name for model hyper-parameters file. Default value is "model.params".
  • --outdir: Specify path to directory where the trained model will be saved.
  • --train: Specify path to the training data file.
  • --dev: Specify path to the development data file.

For example:

SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 --dynet-mem 1000 --epochs 30 --lstmdims 128 --lstmlayers 2 --hidden 100 --wembedding 100 --cembedding 50 --pembedding 100  --model trialmodel --params trialmodel.params --outdir sample/ --train sample/train.conllu --dev sample/dev.conllu

will produce model files trialmodel and trialmodel.params in folder SOURCE_DIR/sample.

If you would like to use the fine-grained language-specific POS tags in the 5th column instead of the coarse-grained POS tags in the 4th column, you should use swapper.py in folder SOURCE_DIR/utils to swap contents in the 4th and 5th columns:

SOURCE_DIR$ python utils/swapper.py <path-to-train-(and-dev)-file>

For example:

SOURCE_DIR$ python utils/swapper.py sample/train.conllu
SOURCE_DIR$ python utils/swapper.py sample/dev.conllu

will generate two new files for training: train.conllu.ux2xu and dev.conllu.ux2xu in folder SOURCE_DIR/sample.

Utilize a pre-trained model

Assume that you are going to utilize a pre-trained model for annotating a corpus whose each line represents a tokenized/word-segmented sentence. You should use converter.py in folder SOURCE_DIR/utils to obtain a 10-column data format of this corpus:

SOURCE_DIR$ python utils/converter.py <file-path>

For example:

SOURCE_DIR$ python utils/converter.py sample/test

will generate in folder SOURCE_DIR/sample a file named test.conllu which can be used later as input to the pre-trained model.

To utilize a pre-trained model for POS tagging and dependency parsing, you perform:

SOURCE_DIR$ python jPTDP.py --predict --model <path-to-model-parameters-file> --params <path-to-model-hyper-parameters-file> --test <path-to-10-column-input-file> --outdir <path-to-output-directory> --output <String>
  • --model: Specify path to model parameters file.
  • --params: Specify path to model hyper-parameters file.
  • --test: Specify path to 10-column input file.
  • --outdir: Specify path to directory where output file will be saved.
  • --output: Specify name of the output file.

For example:

SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/test.conllu --outdir sample/ --output test.conllu.pred
SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/dev.conllu --outdir sample/ --output dev.conllu.pred

will produce output files test.conllu.pred and dev.conllu.pred in folder SOURCE_DIR/sample.

Pre-trained models

Pre-trained jPTDP v2.0 models, which were trained on English WSJ Penn treebank, GENIA and UD v2.2 treebanks, can be found at HERE. Results on test sets (as detailed in paper [1]) are as follows:

Treebank Model name POS UAS LAS
English WSJ Penn treebank model256 97.97 94.51 92.87
English WSJ Penn treebank model 97.88 94.25 92.58

model256 and model denote the pre-trained models which use 256- and 128-dimensional LSTM hidden states, respectively, i.e. model256 is more accurate but slower.

Treebank Code UPOS UAS LAS
UD_Afrikaans-AfriBooms af_afribooms 95.73 82.57 78.89
UD_Ancient_Greek-PROIEL grc_proiel 96.05 77.57 72.84
UD_Ancient_Greek-Perseus grc_perseus 88.95 65.09 58.35
UD_Arabic-PADT ar_padt 96.33 86.08 80.97
UD_Basque-BDT eu_bdt 93.62 79.86 75.07
UD_Bulgarian-BTB bg_btb 98.07 91.47 87.69
UD_Catalan-AnCora ca_ancora 98.46 90.78 88.40
UD_Chinese-GSD zh_gsd 93.26 82.50 77.51
UD_Croatian-SET hr_set 97.42 88.74 83.62
UD_Czech-CAC cs_cac 98.87 89.85 87.13
UD_Czech-FicTree cs_fictree 97.98 88.94 85.64
UD_Czech-PDT cs_pdt 98.74 89.64 87.04
UD_Czech-PUD cs_pud 96.71 87.62 82.28
UD_Danish-DDT da_ddt 96.18 82.17 78.88
UD_Dutch-Alpino nl_alpino 95.62 86.34 82.37
UD_Dutch-LassySmall nl_lassysmall 95.21 86.46 82.14
UD_English-EWT en_ewt 95.48 87.55 84.71
UD_English-GUM en_gum 94.10 84.88 80.45
UD_English-LinES en_lines 95.55 80.34 75.40
UD_English-PUD en_pud 95.25 87.49 84.25
UD_Estonian-EDT et_edt 96.87 85.45 82.13
UD_Finnish-FTB fi_ftb 94.53 86.10 82.45
UD_Finnish-PUD fi_pud 96.44 87.54 84.60
UD_Finnish-TDT fi_tdt 96.12 86.07 82.92
UD_French-GSD fr_gsd 97.11 89.45 86.43
UD_French-Sequoia fr_sequoia 97.92 89.71 87.43
UD_French-Spoken fr_spoken 94.25 79.80 73.45
UD_Galician-CTG gl_ctg 97.12 85.09 81.93
UD_Galician-TreeGal gl_treegal 93.66 77.71 71.63
UD_German-GSD de_gsd 94.07 81.45 76.68
UD_Gothic-PROIEL got_proiel 93.45 79.80 71.85
UD_Greek-GDT el_gdt 96.59 87.52 84.64
UD_Hebrew-HTB he_htb 96.24 87.65 82.64
UD_Hindi-HDTB hi_hdtb 96.94 93.25 89.83
UD_Hungarian-Szeged hu_szeged 92.07 76.18 69.75
UD_Indonesian-GSD id_gsd 93.29 84.64 77.71
UD_Irish-IDT ga_idt 89.74 75.72 65.78
UD_Italian-ISDT it_isdt 98.01 92.33 90.20
UD_Italian-PoSTWITA it_postwita 95.41 84.20 79.11
UD_Japanese-GSD ja_gsd 97.27 94.21 92.02
UD_Japanese-Modern ja_modern 70.53 66.88 49.51
UD_Korean-GSD ko_gsd 93.35 81.32 76.58
UD_Korean-Kaist ko_kaist 93.53 83.59 80.74
UD_Latin-ITTB la_ittb 98.12 82.99 79.96
UD_Latin-PROIEL la_proiel 95.54 74.95 69.76
UD_Latin-Perseus la_perseus 82.36 57.21 46.28
UD_Latvian-LVTB lv_lvtb 93.53 81.06 76.13
UD_North_Sami-Giella sme_giella 87.48 65.79 58.09
UD_Norwegian-Bokmaal no_bokmaal 97.73 89.83 87.57
UD_Norwegian-Nynorsk no_nynorsk 97.33 89.73 87.29
UD_Norwegian-NynorskLIA no_nynorsklia 85.22 64.14 54.31
UD_Old_Church_Slavonic-PROIEL cu_proiel 93.69 80.59 73.93
UD_Old_French-SRCMF fro_srcmf 95.12 86.65 81.15
UD_Persian-Seraji fa_seraji 96.66 88.07 84.07
UD_Polish-LFG pl_lfg 98.22 95.29 93.10
UD_Polish-SZ pl_sz 97.05 90.98 87.66
UD_Portuguese-Bosque pt_bosque 96.76 88.67 85.71
UD_Romanian-RRT ro_rrt 97.43 88.74 83.54
UD_Russian-SynTagRus ru_syntagrus 98.51 91.00 88.91
UD_Russian-Taiga ru_taiga 85.49 65.52 56.33
UD_Serbian-SET sr_set 97.40 89.32 85.03
UD_Slovak-SNK sk_snk 95.18 85.88 81.89
UD_Slovenian-SSJ sl_ssj 97.79 88.26 86.10
UD_Slovenian-SST sl_sst 89.50 66.14 58.13
UD_Spanish-AnCora es_ancora 98.57 90.30 87.98
UD_Swedish-LinES sv_lines 95.51 83.60 78.97
UD_Swedish-PUD sv_pud 92.10 79.53 74.53
UD_Swedish-Talbanken sv_talbanken 96.55 86.53 83.01
UD_Turkish-IMST tr_imst 92.93 70.53 62.55
UD_Ukrainian-IU uk_iu 95.24 83.47 79.38
UD_Urdu-UDTB ur_udtb 93.35 86.74 80.44
UD_Uyghur-UDT ug_udt 87.63 76.14 63.37
UD_Vietnamese-VTB vi_vtb 87.63 67.72 58.27
Comments
  • Low POS in WSJ

    Low POS in WSJ

    Hi , I tested on the WSJ dataset with model256 and only got accuracy about 95.5%. I would like to ask that how can i get the accuracy 97.97 of the paper. I used the parameters set in the code, no changes were made.

    opened by ava-YangL 3
  • learner.py Word dropout

    learner.py Word dropout

    Seems in lines 252-259 of learner.py, you still consider the character embeddings while the word is potentially dropped. Not sure if this makes sense.

    opened by TheElephantInTheRoom 2
  • Named Entity Recognition tool ?!

    Named Entity Recognition tool ?!

    Salutation Sir... that was a great job and a very powerful PoS tool I wanted to ask you if you developed a "named entity recognition" or as they name it "chunking" tool with this PoS tool. I need it in my experiments
    thanks in advance

    opened by Raki22 1
  •  Low UAS and LAS scores

    Low UAS and LAS scores

    I have tried using your parser to test with EWT English treebank, and surprisingly UAS and LAS scores are low, around 87.50 and 84.53. I have used conll2017 shared task pretrained word embeddings. Do you think this is normal or am I doing something wrong?

    opened by Eugen2525 1
  • trainer.update

    trainer.update

    The trainer.update here doesn't make sense.

    This was trainer.update_epoch() in the original code-base of bist-parser, but since the port from Dynet v1.1 to Dynet v2, the update_epoch function is deprecated. The use for calling update_epoch was to update the learning_rate. Which is not going to happen by calling trainer.update, as far as I know.

    opened by TheElephantInTheRoom 1
Releases(v1.0)
  • v1.0(Feb 28, 2018)

Owner
Dat Quoc Nguyen
Dat Quoc Nguyen
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022