[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Overview

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Introduction

We introduce the task of dense captioning in 3D scans from commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene; the expected output is the bounding boxes along with the descriptions for the underlying objects. To address the 3D object detection and description problems, we propose Scan2Cap, an end-to-end trained method, to detect objects in the input scene and describe them in natural language. We use an attention mechanism that generates descriptive tokens while referring to the related components in the local context. To reflect object relations (i.e. relative spatial relations) in the generated captions, we use a message passing graph module to facilitate learning object relation features. Our method can effectively localize and describe 3D objects in scenes from the ScanRefer dataset, outperforming 2D baseline methods by a significant margin (27.61% [email protected] improvement).

Please also check out the project website here.

For additional detail, please see the Scan2Cap paper:
"Scan2Cap: Context-aware Dense Captioning in RGB-D Scans"
by Dave Zhenyu Chen, Ali Gholami, Matthias Nießner and Angel X. Chang
from Technical University of Munich and Simon Fraser University.

Data

ScanRefer

If you would like to access to the ScanRefer dataset, please fill out this form. Once your request is accepted, you will receive an email with the download link.

Note: In addition to language annotations in ScanRefer dataset, you also need to access the original ScanNet dataset. Please refer to the ScanNet Instructions for more details.

Download the dataset by simply executing the wget command:

wget <download_link>

Scan2CAD

As learning the relative object orientations in the relational graph requires CAD model alignment annotations in Scan2CAD, please refer to the Scan2CAD official release (you need ~8MB on your disk). Once the data is downloaded, extract the zip file under data/ and change the path to Scan2CAD annotations (CONF.PATH.SCAN2CAD) in lib/config.py . As Scan2CAD doesn't cover all instances in ScanRefer, please download the mapping file and place it under CONF.PATH.SCAN2CAD. Parsing the raw Scan2CAD annotations by the following command:

python scripts/Scan2CAD_to_ScanNet.py

Setup

Please execute the following command to install PyTorch 1.8:

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

And don't forget to refer to Pytorch Geometric to install the graph support.

After all packages are properly installed, please run the following commands to compile the CUDA modules for the PointNet++ backbone:

cd lib/pointnet2
python setup.py install

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Data preparation

  1. Download the ScanRefer dataset and unzip it under data/ - You might want to run python scripts/organize_scanrefer.py to organize the data a bit.
  2. Download the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset).

After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00

  1. Pre-process ScanNet data. A folder named scannet_data/ will be generated under data/scannet/ after running the following command. Roughly 3.8GB free space is needed for this step:
cd data/scannet/
python batch_load_scannet_data.py

After this step, you can check if the processed scene data is valid by running:

python visualize.py --scene_id scene0000_00
  1. (Optional) Pre-process the multiview features from ENet.

    a. Download the ENet pretrained weights (1.4MB) and put it under data/

    b. Download and decompress the extracted ScanNet frames (~13GB).

    c. Change the data paths in config.py marked with TODO accordingly.

    d. Extract the ENet features:

    python scripts/compute_multiview_features.py

    e. Project ENet features from ScanNet frames to point clouds; you need ~36GB to store the generated HDF5 database:

    python scripts/project_multiview_features.py --maxpool

    You can check if the projections make sense by projecting the semantic labels from image to the target point cloud by:

    python scripts/project_multiview_labels.py --scene_id scene0000_00 --maxpool

Usage

End-to-End training for 3D dense captioning

Run the following script to start the end-to-end training of Scan2Cap model using the multiview features and normals. For more training options, please run scripts/train.py -h:

python scripts/train.py --use_multiview --use_normal --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 --batch_size 12 --epoch 50

The trained model as well as the intermediate results will be dumped into outputs/ . For evaluating the model (@0.5IoU), please run the following script and change the accordingly, and note that arguments must match the ones for training:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_caption --min_iou 0.5

Evaluating the detection performance:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_detection

You can even evaluate the pretraiend object detection backbone:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_detection --eval_pretrained

If you want to visualize the results, please run this script to generate bounding boxes and descriptions for scene to outputs/ :

python scripts/visualize.py --folder <output_folder> --scene_id <scene_id> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10

Note that you need to run python scripts/export_scannet_axis_aligned_mesh.py first to generate axis-aligned ScanNet mesh files.

3D dense captioning with ground truth bounding boxes

For experimenting the captioning performance with ground truth bounding boxes, you need to extract the box features with a pre-trained extractor. The pretrained ones are already in pretrained, but if you want to train a new one from scratch, run the following script:

python scripts/train_maskvotenet.py --batch_size 8 --epoch 200 --lr 1e-3 --wd 0 --use_multiview --use_normal

The pretrained model will be stored under outputs/ . Before we proceed, you need to move the to pretrained/ and change the name of the folder to XYZ_MULTIVIEW_NORMAL_MASKS_VOTENET, which must reflect the features while training, e.g. MULTIVIEW -> --use_multiview.

After that, let's run the following script to extract the features for the ground truth bounding boxes. Note that the feature options must match the ones in the previous steps:

python scripts/extract_gt_features.py --batch_size 16 --epoch 100 --use_multiview --use_normal --train --val

The extracted features will be stored as a HDF5 database under /gt_ _features . You need ~610MB space on your disk.

Now the box features are ready - we're good to go! Next step: run the following command to start training the dense captioning pipeline with the extraced ground truth box features:

python scripts/train_pretrained.py --mode gt --batch_size 32 --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10

For evaluating the model, run the following command:

python scripts/eval_pretrained.py --folder <ouptut_folder> --mode gt --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 

3D dense captioning with pre-trained VoteNet bounding boxes

If you would like to play around with the pre-trained VoteNet bounding boxes, you can directly use the pre-trained VoteNet in pretrained. After picking the model you like, run the following command to extract the bounding boxes and associated box features:

python scripts/extract_votenet_features.py --batch_size 16 --epoch 100 --use_multiview --use_normal --train --val

Now the box features are ready. Next step: run the following command to start training the dense captioning pipeline with the extraced VoteNet boxes:

python scripts/train_pretrained.py --mode votenet --batch_size 32 --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10

For evaluating the model, run the following command:

python scripts/eval_pretrained.py --folder <ouptut_folder> --mode votenet --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 

Experiments on ReferIt3D

Yes, of course you can use the ReferIt3D dataset for training and evaluation. Simply download ReferIt3D dataset and unzip it under data, then run the following command to convert it to ScanRefer format:

python scripts/organize_referit3d.py

Then you can simply specify the dataset you would like to use by --dataset ReferIt3D in the aforementioned steps. Have fun!

2D Experiments

Please refer to Scan2Cad-2D for more information.

Citation

If you found our work helpful, please kindly cite our paper via:

@inproceedings{chen2021scan2cap,
  title={Scan2Cap: Context-aware Dense Captioning in RGB-D Scans},
  author={Chen, Zhenyu and Gholami, Ali and Nie{\ss}ner, Matthias and Chang, Angel X},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3193--3203},
  year={2021}
}

License

Scan2Cap is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Copyright (c) 2021 Dave Zhenyu Chen, Ali Gholami, Matthias Nießner, Angel X. Chang

Owner
Dave Z. Chen
PhD candidate at TUM
Dave Z. Chen
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023