Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Overview

Real-time stock predictions with deep learning and news scraping

This repository contains a partial implementation of my bachelor's thesis "Real-time stock predictions with deep learning and news scraping". The code has been built using PyTorch Lightning, read its documentation to get a complete overview of how this repository is structured.

Disclaimer: Neither the pipeline nor the model published in this repository are the ones used in the thesis. On the pipeline side, notice that the model tries to match headlines and prices of the same day, while in the thesis we used news published the day before. For the case of the model, the one shared here has nothing to do with the original and should be considered a toy model.

Preparing the data

The data used in the thesis has been completely crawled and put together from scratch. Specifically, you can find the titles and descriptions of the news published on Reuters.com from January 2010 to May 2018. In addition to that, you also have the stock prices (end of the day) of S&P 500 companies extracted from AlphaVantage.co. Everything is compressed in a H5DF file that you can download from this link.

The first step is to clone this repository and install its dependencies:

git clone https://github.com/davidalvarezdlt/bachelor_thesis.git
cd bachelor_thesis
pip install -r requirements.txt

Move both bachelor_thesis_data.hdf5 and word2vec.bin inside ./data. The resulting folder structure should look like this:

bachelor_thesis/
    bachelor_thesis/
    data/
        bachelor_thesis_data.hdf5
        word2vec.bin
    lightning_logs/
    .gitignore
    .pre-commit-config.yaml
    LICENSE
    README.md
    requirements.txt

Training the model

In short, you can train the model by calling:

python -m bachelor_thesis

You can modify the default parameters of the code by using CLI parameters. Get a complete list of the available parameters by calling:

python -m bachelor_thesis --help

For instance, if we want to train the model using GOOGL stock prices, with a batch size of 32 and using one GPUs, we would call:

python -m bachelor_thesis --symbol GOOGL --batch_size 32 --gpus 1

Every time you train the model, a new folder inside ./lightning_logs will be created. Each folder represents a different version of the model, containing its checkpoints and auxiliary files.

Testing the model

You can measure the loss and the accuracy of the model (number of times the prediction is correct) and store it in TensorBoard by calling:

python -m bachelor_thesis --test --test_checkpoint <test_checkpoint>

Where --test_checkpoint is a valid path to the model checkpoint that should be used.

Citation

If you use the data provided in this repository or if you find this thesis useful, please use the following citation:

@thesis{Alvarez2018,
    type = {Bachelor's Thesis},
    author = {David Álvarez de la Torre},
    title = {Real-time stock predictions with Deep Learning and news scrapping},
    school = {Universitat Politècnica de Catalunya},
    year = 2018,
}
Owner
David Álvarez de la Torre
Founder of @lemonplot. Alumni of UPC and ETH.
David Álvarez de la Torre
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022