Python port of Google's libphonenumber

Overview

phonenumbers Python Library

Coverage Status

This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase, with no 2to3 conversion needed).

Original Java code is Copyright (C) 2009-2015 The Libphonenumber Authors.

Release HISTORY, derived from upstream release notes.

Installation

Install using pip with:

pip install phonenumbers

Example Usage

The main object that the library deals with is a PhoneNumber object. You can create this from a string representing a phone number using the parse function, but you also need to specify the country that the phone number is being dialled from (unless the number is in E.164 format, which is globally unique).

>>> import phonenumbers
>>> x = phonenumbers.parse("+442083661177", None)
>>> print(x)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> type(x)
<class 'phonenumbers.phonenumber.PhoneNumber'>
>>> y = phonenumbers.parse("020 8366 1177", "GB")
>>> print(y)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> x == y
True
>>> z = phonenumbers.parse("00 1 650 253 2222", "GB")  # as dialled from GB, not a GB number
>>> print(z)
Country Code: 1 National Number: 6502532222 Leading Zero(s): False

The PhoneNumber object that parse produces typically still needs to be validated, to check whether it's a possible number (e.g. it has the right number of digits) or a valid number (e.g. it's in an assigned exchange).

>>> z = phonenumbers.parse("+120012301", None)
>>> print(z)
Country Code: 1 National Number: 20012301 Leading Zero: False
>>> phonenumbers.is_possible_number(z)  # too few digits for USA
False
>>> phonenumbers.is_valid_number(z)
False
>>> z = phonenumbers.parse("+12001230101", None)
>>> print(z)
Country Code: 1 National Number: 2001230101 Leading Zero: False
>>> phonenumbers.is_possible_number(z)
True
>>> phonenumbers.is_valid_number(z)  # NPA 200 not used
False

The parse function will also fail completely (with a NumberParseException) on inputs that cannot be uniquely parsed, or that can't possibly be phone numbers.

>>> z = phonenumbers.parse("02081234567", None)  # no region, no + => unparseable
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2350, in parse
    "Missing or invalid default region.")
phonenumbers.phonenumberutil.NumberParseException: (0) Missing or invalid default region.
>>> z = phonenumbers.parse("gibberish", None)
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2344, in parse
    "The string supplied did not seem to be a phone number.")
phonenumbers.phonenumberutil.NumberParseException: (1) The string supplied did not seem to be a phone number.

Once you've got a phone number, a common task is to format it in a standardized format. There are a few formats available (under PhoneNumberFormat), and the format_number function does the formatting.

>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.NATIONAL)
'020 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.INTERNATIONAL)
'+44 20 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.E164)
'+442083661177'

If your application has a UI that allows the user to type in a phone number, it's nice to get the formatting applied as the user types. The AsYouTypeFormatter object allows this.

>>> formatter = phonenumbers.AsYouTypeFormatter("US")
>>> formatter.input_digit("6")
'6'
>>> formatter.input_digit("5")
'65'
>>> formatter.input_digit("0")
'650'
>>> formatter.input_digit("2")
'650 2'
>>> formatter.input_digit("5")
'650 25'
>>> formatter.input_digit("3")
'650 253'
>>> formatter.input_digit("2")
'650-2532'
>>> formatter.input_digit("2")
'(650) 253-22'
>>> formatter.input_digit("2")
'(650) 253-222'
>>> formatter.input_digit("2")
'(650) 253-2222'

Sometimes, you've got a larger block of text that may or may not have some phone numbers inside it. For this, the PhoneNumberMatcher object provides the relevant functionality; you can iterate over it to retrieve a sequence of PhoneNumberMatch objects. Each of these match objects holds a PhoneNumber object together with information about where the match occurred in the original string.

>>> text = "Call me at 510-748-8230 if it's before 9:30, or on 703-4800500 after 10am."
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(match)
...
PhoneNumberMatch [11,23) 510-748-8230
PhoneNumberMatch [51,62) 703-4800500
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.E164))
...
+15107488230
+17034800500

You might want to get some information about the location that corresponds to a phone number. The geocoder.area_description_for_number does this, when possible.

>>> from phonenumbers import geocoder
>>> ch_number = phonenumbers.parse("0431234567", "CH")
>>> geocoder.description_for_number(ch_number, "de")
'Zürich'
>>> geocoder.description_for_number(ch_number, "en")
'Zurich'
>>> geocoder.description_for_number(ch_number, "fr")
'Zurich'
>>> geocoder.description_for_number(ch_number, "it")
'Zurigo'

For mobile numbers in some countries, you can also find out information about which carrier originally owned a phone number.

>>> from phonenumbers import carrier
>>> ro_number = phonenumbers.parse("+40721234567", "RO")
>>> carrier.name_for_number(ro_number, "en")
'Vodafone'

You might also be able to retrieve a list of time zone names that the number potentially belongs to.

>>> from phonenumbers import timezone
>>> gb_number = phonenumbers.parse("+447986123456", "GB")
>>> timezone.time_zones_for_number(gb_number)
('Atlantic/Reykjavik', 'Europe/London')

For more information about the other functionality available from the library, look in the unit tests or in the original libphonenumber project.

Memory Usage

The library includes a lot of metadata, potentially giving a significant memory overhead. There are two mechanisms for dealing with this.

  • The normal metadata for the core functionality of the library is loaded on-demand, on a region-by-region basis (i.e. the metadata for a region is only loaded on the first time it is needed).
  • Metadata for extended functionality is held in separate packages, which therefore need to be explicitly loaded separately. This affects:
    • The geocoding metadata, which is held in phonenumbers.geocoder and used by the geocoding functions (geocoder.description_for_number, geocoder.description_for_valid_number or geocoder.country_name_for_number).
    • The carrier metadata, which is held in phonenumbers.carrier and used by the mapping functions (carrier.name_for_number or carrier.name_for_valid_number).
    • The timezone metadata, which is held in phonenumbers.timezone and used by the timezone functions (time_zones_for_number or time_zones_for_geographical_number).

The phonenumberslite version of the library does not include the geocoder, carrier and timezone packages, which can be useful if you have problems installing the main phonenumbers library due to space/memory limitations.

If you need to ensure that the metadata memory use is accounted for at start of day (i.e. that a subsequent on-demand load of metadata will not cause a pause or memory exhaustion):

  • Force-load the normal metadata by calling phonenumbers.PhoneMetadata.load_all().
  • Force-load the extended metadata by importing the appropriate packages (phonenumbers.geocoder, phonenumbers.carrier, phonenumbers.timezone).

The phonenumberslite version of the package does not include the geocoding, carrier and timezone metadata, which can be useful if you have problems installing the main phonenumbers package due to space/memory limitations.

Project Layout

  • The python/ directory holds the Python code.
  • The resources/ directory is a copy of the resources/ directory from libphonenumber. This is not needed to run the Python code, but is needed when upstream changes to the master metadata need to be incorporated.
  • The tools/ directory holds the tools that are used to process upstream changes to the master metadata.
Owner
David Drysdale
David Drysdale
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022