Implementation of average- and worst-case robust flatness measures for adversarial training.

Overview

Relating Adversarially Robust Generalization to Flat Minima

This repository contains code corresponding to the MLSys'21 paper:

D. Stutz, M. Hein, B. Schiele. Relating Adversarially Robust Generalization to Flat Minima. ICCV, 2021.

Please cite as:

@article{Stutz2021ICCV,
    author    = {David Stutz and Matthias Hein and Bernt Schiele},
    title     = {Relating Adversarially Robust Generalization to Flat Minima},
    booktitle = {IEEE International Conference on Computer Vision (ICCV)},
    publisher = {IEEE Computer Society},
    year      = {2021}
}

Also check the project page.

This repository allows to reproduce experiments reported in the paper or use the correspondsing quantization, weight clipping or training procedures as standalone components.

Relating Adversarially Robust Generalization to Flat Minima.

Overview

Installation

The following list includes all Python packages required

  • torch (including torch.utils.tensorboard)
  • torchvision
  • tensorflow
  • tensorboard
  • h5py
  • json
  • numpy
  • zipfile
  • umap
  • sklearn
  • imageio
  • scipy
  • imgaug

The requirements can be checked using python3 tests/test_installation.py. If everything works correctly, all tests in tests/ should run without failure.

Code tested with the following versions:

  • Debain 9
  • Python 3.5.3
  • torch 1.3.1+cu92 (with CUDA 9.2)
  • torchvision 0.4.2+cu92
  • tensorflow 1.14.0
  • tensorboard 1.14.0
  • h5py 2.9.0
  • numpy 1.18.2
  • scipy 1.4.1
  • sklearn 0.22.1
  • imageio 2.5.0
  • imgaug 0.2.9
  • gcc 6.3.0

Also see environment.yml for a (not minimal) export of the used environment.

Download Datasets

To prepare experiments, datasets need to be downloaded and their paths need to be specified:

Check common/paths.py and adapt the following variables appropriately:

# Absolute path to the data directory:
# BASE_DATA/mnist will contain MNIST
# BASE_DATA/Cifar10 (capitlization!) will contain Cifar10
# BASE_DATA/Cifar100 (capitlization!) will contain Cifar100
BASE_DATA = '/absolute/path/to/data/directory/'
# Absolute path to experiments directory, experimental results will be written here (i.e., models, perturbed models ...)
BASE_EXPERIMENTS = '/absolute/path/to/experiments/directory/'
# Absolute path to log directory (for TensorBoard logs).
BASE_LOGS = '/absolute/path/to/log/directory/'
# Absolute path to code directory (this should point to the root directory of this repository)
BASE_CODE = '/absolute/path/to/root/of/this/repository/'

Download datasets and copy to the appropriate places. Note that MNIST is only needed for tests and is not used in the paper's experiments.

Note that MNIST was not used in the paper, but will be required when running some tests in tests/!

Dataset Download
MNIST mnist.zip
CIFAR10 cifar10.zip
TinyImages 500k tinyimages500k.zip

Manual Conversion of Datasets

Download MNIST and 500k tiny images from the original sources [1,2]. Then, use the scripts in data to convert and check the datasets. For the code to run properly, the datasets are converted to HDF5 format. Cifar is downloaded automatically.

[1] http://yann.lecun.com/exdb/mnist/
[2] https://github.com/yaircarmon/semisup-adv

The final dataset directory structure should look as follows:

BASE_DATE/mnist
|- t10k-images-idx3-ubyte.gz (downloaded)
|- t10k-labels-idx-ubyte.gz (downloaded)
|- train-images-idx3-ubyte.gz (downloaded)
|- train-labels-idx1-ubyte.gz (downloaded)
|- train_images.h5 (from data/mnist/convert_mnist.py)
|- test_images.h5 (from data/mnist/convert_mnist.py)
|- train_labels.h5 (from data/mnist/convert_mnist.py)
|- test_labels.h5 (from data/mnist/convert_mnist.py)
BASE_DATA/Cifar10
|- cifar-10-batches-py (from torchvision)
|- cifar-10-python.tar.gz (from torchvision)
|- train_images.h5 (from data/cifar10/convert_cifar.py)
|- test_images.h5 (from data/cifar10/convert_cifar.py)
|- train_labels.h5 (from data/cifar10/convert_cifar.py)
|- test_labels.h5 (from data/cifar10/convert_cifar.py)
BASE_DATA/500k_pseudolabeled.pickle
BASE_DATA/tinyimages500k
|- train_images.h5
|- train_labels.h5

Standalone Components

There are various components that can be used in a standalone fashion. To highlight a few of them:

  • Training procedures for adversarial training variants:
    • Vanilla adversarial training - common/train/adversarial_training.py
    • Adversarial training with (adversarial) weight perturbations - common/train/adversarial_weights_inputs_training.py
    • Adversarial training with semi-supervision - common/train/adversarial_semi_supervised_training.py
    • Adversarial training with Entropy-SGD - common/train/entropy_adversarial_training.py
    • TRADES or MART - common/train/[mart|trades]_adversarial_training.py
  • Adversarial attacks:
    • PGD and variants - attacks/batch_gradient_descent.py
    • AutoAttack - attacks/batch_auto_attack.py
  • Computing Hessian eigenvalues and vectors - common/hessian.py

Reproduce Experiments

Experiments are defined in experiments/iccv. The experiments, i.e., attacks, flatness measures and training modesl, are defined in experiments/iccv/common.py. This is done for three cases on CIFAR10: with AutoAugment using cifar10.py, without AutoAugment in cifar10_noaa.py and with unlabeled data (without AutoAugment) in cifar10_noaa_500k.py.

The experiments are run using the command line tools provided in experiments/, e.g., experiments/train.py for training a model and experiments/attack.py for injecting bit errors. Results are evaluated in Jupyter notebooks, an examples can be found in experiments/mlsys/eval/evaluation_cifar10.ipynb.

All experiments are saved in BASE_EXPERIMENTS.

Training

Training a model is easy using the following command line tool:

python3 train.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64

It also allows to use different activation functions using the -a option, different architectures or normalization layers. As detailed above, iccv.cifar10_noaa corresponds to CIFAR10 without AutoAugment. The same models can be trained with AutoAugment using iccv.cifar10 or with additional unlabeled data using iccv.cifar10_noo_500k. The model identifier, e.g., at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 is defined in experiments/iccv/common.py and examples can be found below.

Evaluation

To evaluate trained models on clean test or training examples use:

python3 test.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64

with --train for training examples. Using --epochs this can be done for all snapshots, i.e., every 5th epoch.

Adversarial evaluation involves computing robust test error using AutoAttack, robust loss using PGD and average- as well as worst-case flatness:

python3 attack.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64 cifar10_benchmark

This can also be done for every 5th epoch as follows:

python3 attack.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64 cifar10_epochs_benchmark --epochs

(Note that the downloadable experiment data only includes snapshots for vanilla adversarial training in the interest of download size.)

Visualization

Pre-computed experiments can be downloaded here. Note that this data does not correspond to the results from the paper, but were generated using this repository to illustrate usage. These models also do not include snapshots in the interest of download size. Log files for plotting training curves are also not included.

The plots from the paper can be produced using experiments/iccv/eval/evaluation_iccv.ipynb. When ran correctly, the notebook should look as in experiments/iccv/eval/evaluation_iccv.pdf. The evaluation does not include all models from the paper by default, but illustrates the usage on some key models. To run the evaluation and create the below plots, the following models need to be trained and evaluated using cifar10_benchmark defined in experiments/iccv.common.py:

  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i7_e00352_f100
  • at_ii_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_pll_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • 0005p_at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls01
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls02
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls03
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls04
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls05
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln01
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln02
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln03
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln04
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln05
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_cyc
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd0001
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd001
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd005
  • at_ssl05_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl1_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl2_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl4_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl8_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades1_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades3_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades6_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades9_linf_gd_normalized_lr0007_mom0_i7_e00314_f100

Examples for training and evaluation can be found above. The corresponding correlation plots from the paper should look as follows with the downloaded experiment data:

Average-Case Robust Flatness and RLoss.

Average-Case Robust Flatness and Robust Generalization.

Visualizing Robust Flatness

For visualizing the robust loss landscape across, the following commands can be used:

python3 visualize.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn weight_l2_random_nonorm2_e01_at10 -l=input_linf_gd_normalized_lr0007_mom0_i10_e00314_at10 -d=layer_l2_05
python3 visualize.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn weight_l2_gd_nonorm2_lwrl2normalized_i7_lr001_mom0_e0005_at10_test -l=input_linf_gd_normalized_lr0007_mom0_i10_e00314_at10 -d=layer_l2_001

Random Direction.

Adversarial Direction.

Hessian Eigenvalues

The following command allows to compute Hessian eigenvalues:

python3 hessian.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn -k=4

License

This repository includes code from:

Copyright (c) 2021 David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

Owner
David Stutz
PhD student at Max Planck Institute for Informatics, davidstutz.de
David Stutz
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021