Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Overview

Contact and Human Dynamics from Monocular Video

This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan Russell, Ruben Villegas, and Jimei Yang. For more information, see the project webpage.

Teaser

Environment Setup

Note: the code in this repo has only been tested on Ubuntu 16.04.

First create and activate a virtual environment to install dependencies for the code in this repo. For example with conda:

  • conda create -n contact_dynamics_env python=3.6
  • conda activate contact_dynamics_env
  • pip install -r requirements.txt

Note the package versions in the requirements file are the exact ones tested on, but may need to be modified for your system. The code also uses ffmpeg.

This codebase requires the installation of a number of external dependencies that have their own installation instructions/environments, e.g., you will likely want to create a different environment just to run Monocular Total Capture below. The following external dependencies are only necessary to run the full pipeline (both contact detection and physical optimization). If you're only interested in detecting foot contacts, it is only necessary to install OpenPose.

To get started, from the root of this repo mkdir external.

Monocular Total Capture (MTC)

The full pipeline runs on the output from Monocular Total Capture (MTC). To run MTC, you must clone this fork which contains a number of important modifications:

  • cd external
  • git clone https://github.com/davrempe/MonocularTotalCapture.git
  • Follow installation instructions in that repo to set up the MTC environment.

TOWR

The physics-based optimization takes advantage of the TOWR library. Specifically, this fork must be used:

  • cd external
  • git clone https://github.com/davrempe/towr.git
  • Follow the intallation instructions to build and install the library using cmake.

Building Physics-Based Optimization

Important Note: if you did not use the HSL routines when building IPopt as suggested, in towr_phys_optim/phys_optim.cpp you will need to change the line solver->SetOption("linear_solver", "MA57"); to solver->SetOption("linear_solver", "mumps"); before building our physics-based optimization. This uses the slower MUMPS solver and should be avoided if possible.

After building and installing TOWR, we must build the physics-based optimization part of the pipeline. To do this from the repo root:

cd towr_phys_optim
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make

Downloads

Synthetic Dataset

The synthetic dataset used to train our foot contact detection network contains motion sequences on various Mixamo characters. For each sequence, the dataset contains rendered videos from 2 different camera viewpoints, camera parameters, annotated foot contacts, detected 2D pose (with OpenPose), and the 3D motion as a bvh file. Note, this dataset is only needed if you want to retrain the contact detection network.

To download the dataset:

  • cd data
  • bash download_full.sh to download the full (52 GB) dataset or bash download_sample.sh for a sample version (715 MB) with limited motions from 2 characters.

Pretrained Weights

To download pretrained weights for the foot contact detection network, run:

  • cd pretrained_weights
  • bash download.sh

Running the Pipeline on Real Videos

Next we'll walk through running each part of the pipeline on a set of real-world videos. A small example dataset with 2 videos is provided in data/example_data. Data should always be structured as shown in example_data where each video is placed in its own directory named the same as the video file to be processed - inputs and outputs for parts of the pipeline will be saved in these directories. There is a helper script to create this structure from a directory of videos.

The first two steps in the pipeline are running MTC/OpenPose on the video to get 3D/2D pose inputs, followed by foot contact detection using the 2D poses.

Running MTC

The first step is to run MTC and OpenPose. This will create the necessary data (2D and 3D poses) to run both foot contact detection and physical optimization.

The scripts/run_totalcap.py is used to run MTC. It is invoked on a directory containg any number of videos, each in their own directory, and will run MTC on all contained videos. The script runs MTC, post-processes the results to be used in the rest of the pipeline, and saves videos visualizing the final output. The script copies all the needed outputs (in particular tracked_results.json and the OpenPose detection openpose_results directly to the given data directory). To run MTC for the example data, first cd scripts then:

python run_totalcap.py --data ../data/example_data --out ../output/mtc_viz_out --totalcap ../external/MonocularTotalCapture

Alternatively, if you only want to do foot contact detection (and don't care about the physical optimization), you can instead run OpenPose by itself without MTC. There is a helper script to do this in scripts:

python run_openpose.py --data ../data/example_data --out ../data/example_data --openpose ../external/openpose --hands --face --save-video

This runs OpenPose and saves the outputs directly to the same data directory for later use in contact detection.

Foot Contact Detection

The next step is using the learned neural network to detect foot contacts from the 2D pose sequence.

To run this, first download the pretrained network weights as detailed above. Then to run on the example data cd scripts and then:

python run_detect_contacts.py --data ../data/example_data --weights ../pretrained_weights/contact_detection_weights.pth

This will detect and save foot contacts for each video in the data directory to a file called foot_contacts.npy. This is simply an Fx4 array where F is the number of frames; for each frame there is a binary contact label for the left heel, left toe, right heel, and right toe, in that order.

You may also optionally add the --viz flag to additionally save a video with overlaid detections (currently requires a lot of memory for videos more than a few seconds long).

Trajectory Optimization

Finally, we are able to run the kinematic optimization, retargeting, and physics-based optimization steps.

There is a single script to run all these - simply make sure you are in the scripts directory, then run:

python run_phys_mocap.py --data ../data/example_data --character ybot

This command will do the optimization directly on the YBot Mixamo character (ty and skeletonzombie are also availble). To perform the optimization on the skeleton estimated from video (i.e., to not use the retargeting step), give the argument --character combined.

Each of the steps in this pipeline can be run individually if desired, see how to do this in run_phys_mocap.py.

Visualize Results with Blender

We can visualize results on a character using Blender. Before doing this, ensure Blender v2.79b is installed.

You will first need to download the Blender scene we use for rendering. From the repo root cd data then bash download_viz.sh will place viz_scene.blend in the data directory. Additionally, you need to download the character T-pose FBX file from the Mixamo website; in this example we are using the YBot character.

To visualize the result for a sequence, make sure you are in the src directory and use something like:

blender -b -P viz/viz_blender.py -- --results ../data/example_data/dance1 --fbx ../data/fbx/ybot.fbx --scene ../data/viz_scene.blend --character ybot --out ../output/rendered_res --fps 24 --draw-com --draw-forces

Note that there are many options to customize this rendering - please see the script for all these. Also the side view is set up heuristically, you may need to manually tune setup_camera depending on your video.

Training and Testing Contact Detection Network on Synthetic Data

To re-train the contact detection network on the synthetic dataset and run inference on the test set use the following:

>> cd src
# Train the contact detection network
>> python contact_learning/train.py --data ../data/synthetic_dataset --out ../output/contact_learning_results
# Run detection on the test set
>> python contact_learning/test.py --data ../data/synthetic_dataset --out ../output/contact_learning_results --weights-path ../output/contact_learning_results/op_only_weights_BEST.pth --full-video

Citation

If you found this code or paper useful, please consider citing:

@inproceedings{RempeContactDynamics2020,
    author={Rempe, Davis and Guibas, Leonidas J. and Hertzmann, Aaron and Russell, Bryan and Villegas, Ruben and Yang, Jimei},
    title={Contact and Human Dynamics from Monocular Video},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    year={2020}
}

Questions?

If you run into any problems or have questions, please create an issue or contact Davis ([email protected]).

Owner
Davis Rempe
Davis Rempe
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023