REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

Overview

What is MUSE?

MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE).
MUSE/USE models encode sentences into embedding vectors of fixed size.

MUSE paper: link.
USE paper: link.
USE Visually Explainer article: link.

What is MUSE as Service?

MUSE as Service is REST API for sentence tokenization and embedding using MUSE.
It is written on flask + gunicorn.
You can configure gunicorn with gunicorn.conf.py file.

Installation

# clone repo
git clone https://github.com/dayyass/muse_as_service.git

# install dependencies
cd muse_as_service
pip install -r requirements.txt

Run Service

To launch a service use a docker container (either locally or on a server):

docker build -t muse_as_service .
docker run -d -p 5000:5000 --name muse_as_service muse_as_service

NOTE: you can launch a service without docker using gunicorn: sh ./gunicorn.sh, or flask: python app.py, but it is preferable to launch the service inside the docker container.
NOTE: instead of building a docker image, you can pull it from Docker Hub:
docker pull dayyass/muse_as_service

Usage

After you launch the service, you can tokenize and embed any {sentence} using GET requests ({ip} is the address where the service was launched):

http://{ip}:5000/tokenize?sentence={sentence}
http://{ip}:5000/embed?sentence={sentence}

You can use python requests library to work with GET requests (example notebook):

import numpy as np
import requests

ip = "localhost"
port = 5000

sentence = "This is sentence example."

# tokenizer
response = requests.get(
    url=f"http://{ip}:{port}/tokenize",
    params={"sentence": f"{sentence}"},
)
tokenized_sentence = response.json()["content"]

# embedder
response = requests.get(
    url=f"http://{ip}:{port}/embed",
    params={"sentence": f"{sentence}"},
)
embedding = np.array(response.json()["content"][0])

# results
print(tokenized_sentence)  # ['▁This', '▁is', '▁sentence', '▁example', '.']
print(embedding.shape)  # (512,)

But it is better to use the built-in client MUSEClient for sentence tokenization and embedding, that wraps the functionality of the requests library and provides the user with a simpler interface (example notebook):

from muse_as_service import MUSEClient

ip = "localhost"
port = 5000

sentence = "This is sentence example."

# init client
client = MUSEClient(
    ip=ip,
    port=port,
)

# tokenizer
tokenized_sentence = client.tokenize(sentence)

# embedder
embedding = client.embed(sentence)

# results
print(tokenized_sentence)  # ['▁This', '▁is', '▁sentence', '▁example', '.']
print(embedding.shape)  # (512,)

Citation

If you use muse_as_service in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass_muse_as_service,
    author = {El-Ayyass, Dani},
    title = {Multilingual Universal Sentence Encoder REST API},
    howpublished = {\url{https://github.com/dayyass/muse_as_service}},
    year = {2021},
}
You might also like...
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Some embedding layer implementation using ivy library
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Comments
  • How to change batch size

    How to change batch size

    I got the following OOM message: Error on request: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\werkzeug\serving.py", line 324, in run_wsgi execute(self.server.app) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\werkzeug\serving.py", line 313, in execute application_iter = app(environ, start_response) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2091, in call return self.wsgi_app(environ, start_response) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2076, in wsgi_app response = self.handle_exception(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 271, in error_router return original_handler(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2073, in wsgi_app response = self.full_dispatch_request() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1518, in full_dispatch_request rv = self.handle_user_exception(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 271, in error_router return original_handler(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1516, in full_dispatch_request rv = self.dispatch_request() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1502, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 467, in wrapper resp = resource(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\views.py", line 84, in view return current_app.ensure_sync(self.dispatch_request)(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 582, in dispatch_request resp = meth(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_jwt_extended\view_decorators.py", line 127, in decorator return current_app.ensure_sync(fn)(*args, **kwargs) File "F:\repos3\muse-as-service\muse-as-service\src\muse_as_service\endpoints.py", line 56, in get embedding = self.embedder(args["sentence"]).numpy().tolist() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\keras\engine\base_layer.py", line 1037, in call outputs = call_fn(inputs, *args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow_hub\keras_layer.py", line 229, in call result = f() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\saved_model\load.py", line 664, in _call_attribute return instance.call(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\def_function.py", line 885, in call result = self._call(*args, **kwds) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\def_function.py", line 957, in _call filtered_flat_args, self._concrete_stateful_fn.captured_inputs) # pylint: disable=protected-access File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\function.py", line 1964, in _call_flat ctx, args, cancellation_manager=cancellation_manager)) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\function.py", line 596, in call ctx=ctx) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute inputs, attrs, num_outputs) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[32851,782,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/SparseTransformerEncode/Layer_0/SelfAttention/SparseMultiheadAttention/ComputeQKV/ScatterNd}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

         [[StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/layer_prepostprocess/layer_norm/add_1/_128]]
    

    Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

    (1) Resource exhausted: OOM when allocating tensor with shape[32851,782,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/SparseTransformerEncode/Layer_0/SelfAttention/SparseMultiheadAttention/ComputeQKV/ScatterNd}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

    question 
    opened by jiangweiatgithub 3
  • slow response from service

    slow response from service

    I have been comparing the efficency between the muse as service and the original "hub.load" method, and see a noticeable slow reponse in the former, both running separately on my Quadro RTX 5000. Can I safely assume this slowness is due to the very nature of the web service? If so, is there any way to improve it?

    invalid 
    opened by jiangweiatgithub 1
Releases(v1.1.2)
Owner
Dani El-Ayyass
Senior NLP Engineer @ Sber AI, Master Student in Applied Mathematics and Computer Science @ CMC MSU
Dani El-Ayyass
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Saptak Bhoumik 14 May 24, 2022
A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Sentiment Analysis on Yelp's Dataset Author: Roberto Sanchez, Talent Path: D1 Group Docker Deployment: Deployment of this application can be found her

Roberto Sanchez 0 Aug 04, 2021
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023