10x faster matrix and vector operations

Overview

Bolt

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations.

If you have a large collection of mostly-dense vectors and can tolerate lossy compression, Bolt can probably save you 10-200x space and compute time.

Bolt also has theoretical guarantees bounding the errors in its approximations.

EDIT: this repo now also features the source code for MADDNESS, our shiny new algorithm for approximate matrix multiplication. MADDNESS has no Python wrapper yet, and is referred to as "mithral" in the source code. Name changed because apparently I'm the only who gets Lord of the Rings references. MADDNESS runs ridiculously fast and, under reasonable assumptions, requires zero multiply-adds. Realistically, it'll be most useful for speeding up neural net inference on CPUs, but it'll take another couple papers to get it there; we need to generalize it to convolution and write the CUDA kernels to allow GPU training.

NOTE: All below code refers to the Python wrapper for Bolt and has nothing to do with MADDNESS. It also seems to be no longer building for many people. If you want to use MADDNESS, see the Python Implementation driven by amm_main.py or C++ implementation. All code is ugly, but Python code should be pretty easy to add new AMM methods/variations to.

Installing

Python

  $ brew install swig  # for wrapping C++; use apt-get, yum, etc, if not OS X
  $ pip install numpy  # bolt installation needs numpy already present
  $ git clone https://github.com/dblalock/bolt.git
  $ cd bolt && python setup.py install
  $ pytest tests/  # optionally, run the tests

If you run into any problems, please don't hesitate to mention it in the Python build problems issue.

C++

Install Bazel, Google's open-source build system. Then

  $ git clone https://github.com/dblalock/bolt.git
  $ cd bolt/cpp && bazel run :main

The bazel run command will build the project and run the tests and benchmarks.

If you want to integrate Bolt with another C++ project, include cpp/src/include/public.hpp and add the remaining files under cpp/src to your builds. You should let me know if you're interested in doing such an integration because I'm hoping to see Bolt become part of many libraries and thus would be happy to help you.

Notes

Bolt currently only supports machines with AVX2 instructions, which basically means x86 machines from fall 2013 or later. Contributions for ARM support are welcome. Also note that the Bolt Python wrapper is currently configured to require Clang, since GCC apparently runs into issues.

How does it work?

Bolt is based on vector quantization. For details, see the Bolt paper or slides.

Benchmarks

Bolt includes a thorough set of speed and accuracy benchmarks. See the experiments/ directory. This is also what you want if you want to reproduce the results in the paper.

Note that all of the timing results use the raw C++ implementation. At present, the Python wrapper is slightly slower due to Python overhead. If you're interested in having a full-speed wrapper, let me know and I'll allocate time to making this happen.

Basic usage

X, queries = some N x D array, some iterable of length D arrays

# these are approximately equal (though the latter are shifted and scaled)
enc = bolt.Encoder(reduction='dot').fit(X)
[np.dot(X, q) for q in queries]
[enc.transform(q) for q in queries]

# same for these
enc = bolt.Encoder(reduction='l2').fit(X)
[np.sum((X - q) * (X - q), axis=1) for q in queries]
[enc.transform(q) for q in queries]

# but enc.transform() is 10x faster or more

Example: Matrix-vector multiplies

import bolt
import numpy as np
from scipy.stats import pearsonr as corr
from sklearn.datasets import load_digits
import timeit

# for simplicity, use the sklearn digits dataset; we'll split
# it into a matrix X and a set of queries Q
X, _ = load_digits(return_X_y=True)
nqueries = 20
X, Q = X[:-nqueries], X[-nqueries:]

enc = bolt.Encoder(reduction='dot', accuracy='lowest') # can tweak acc vs speed
enc.fit(X)

dot_corrs = np.empty(nqueries)
for i, q in enumerate(Q):
    dots_true = np.dot(X, q)
    dots_bolt = enc.transform(q)
    dot_corrs[i] = corr(dots_true, dots_bolt)[0]

# dot products closely preserved despite compression
print "dot product correlation: {} +/- {}".format(
    np.mean(dot_corrs), np.std(dot_corrs))  # > .97

# massive space savings
print(X.nbytes)  # 1777 rows * 64 cols * 8B = 909KB
print(enc.nbytes)  # 1777 * 2B = 3.55KB

# massive time savings (~10x here, but often >100x on larger
# datasets with less Python overhead; see the paper)
t_np = timeit.Timer(
    lambda: [np.dot(X, q) for q in Q]).timeit(5)        # ~9ms
t_bolt = timeit.Timer(
    lambda: [enc.transform(q) for q in Q]).timeit(5)    # ~800us
print "Numpy / BLAS time, Bolt time: {:.3f}ms, {:.3f}ms".format(
    t_np * 1000, t_bolt * 1000)

# can get output without offset/scaling if needed
dots_bolt = [enc.transform(q, unquantize=True) for q in Q]

Example: K-Nearest Neighbor / Maximum Inner Product Search

# search using squared Euclidean distances
# (still using the Digits dataset from above)
enc = bolt.Encoder('l2', accuracy='high').fit(X)
bolt_knn = [enc.knn(q, k_bolt) for q in Q]  # knn for each query

# search using dot product (maximum inner product search)
enc = bolt.Encoder('dot', accuracy='medium').fit(X)
bolt_knn = [enc.knn(q, k_bolt) for q in Q]  # knn for each query

Miscellaneous

Bolt stands for "Based On Lookup Tables". Feel free to use this exciting fact at parties.

Owner
Machine learning PhD Student at MIT. I build fast machine learning algorithms.
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023