[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

Overview

mmTransformer

Introduction

  • This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented in the commercial project, we provide inference code of model with six trajectory propopals for your reference.

  • For other information, please refer to our paper Multimodal Motion Prediction with Stacked Transformers. (CVPR 2021) [Paper] [Webpage]

img

Set up your virtual environment

  • Initialize virtual environment:

    conda create -n mmTrans python=3.7
    
  • Install agoverse api. Please refer to this page.

  • Install the pytorch. The latest codes are tested on Ubuntu 16.04, CUDA11.1, PyTorch 1.8 and Python 3.7: (Note that we require the version of torch >= 1.5.0 for testing with pretrained model)

    pip install torch==1.8.0+cu111\
          torchvision==0.9.0+cu111\
          torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
    
  • For other requirement, please install with following command:

    pip install -r requirement.txt
    

Preparation

Download the code, model and data

  1. Clone this repo from the GitHub.

     git clone https://github.com/decisionforce/mmTransformer.git
    
  2. Download the pretrained model and data [here] (map.pkl for Python 3.7 is available [here]) and save it to ./models and ./interm_data.

     cd mmTransformer
     mkdir models
     mkdir interm_data
    
  3. Finally, your directory structure should look something like this:

     mmTransformer
     └── models
         └── demo.pt
     └── interm_data
         └── argoverse_info_val.pkl
         └── map.pkl
    

Preprocess the dataset

Alternatively, you can process the data from scratch using following commands.

  1. Download Argoverse dataset and create a symbolic link to ./data folder or use following commands.

     cd path/to/mmtransformer/root
     mkdir data
     cd data
     wget https://s3.amazonaws.com/argoai-argoverse/forecasting_val_v1.1.tar.gz 
     tar -zxvf  forecasting_val_v1.1.tar.gz
    
  2. Then extract the agent and map information from raw data via Argoverse API:

     python -m lib.dataset.argoverse_convertor ./config/demo.py
    
  3. Finally, your directory structure should look something like above illustrated.

Format of processed data in ‘argoverse_info_val.pkl’:

img

Format of map information in ‘map.pkl’:

img

Run the mmTransformer

For testing:

python Evaluation.py ./config/demo.py --model-name demo

Results

Here we showcase the expected results on validation set:

Model Expected results Results in paper
minADE 0.709 0.713
minFDE 1.081 1.153
MR (K=6) 10.2 10.6

TODO

  • We are going to open source our visualization tools and a demo result. (TBD)

Contact us

If you have any issues with the code, please contact to this email: [email protected]

Citation

If you find our work useful for your research, please consider citing the paper

@article{liu2021multimodal,
  title={Multimodal Motion Prediction with Stacked Transformers},
  author={Liu, Yicheng and Zhang, Jinghuai and Fang, Liangji and Jiang, Qinhong and Zhou, Bolei},
  journal={Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
DeciForce: Crossroads of Machine Perception and Autonomy
Research on Unifying Machine Perception and Autonomy in Zhou Group
DeciForce: Crossroads of Machine Perception and Autonomy
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022