Code for Efficient Visual Pretraining with Contrastive Detection

Related tags

Deep Learningdetcon
Overview

Code for DetCon

This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron van den Oord, Oriol Vinyals, João Carreira.

This repository includes sample code to run pretraining with DetCon. In particular, we're providing a sample script for generating the Felzenzwalb segmentations for ImageNet images (using skimage) and a pre-training experiment setup (dataloader, augmentation pipeline, optimization config, and loss definition) that describes the DetCon-B(YOL) model described in the paper. The original code uses a large grid of TPUs and internal infrastructure for training, but we've extracted the key DetCon loss+experiment in this folder so that external groups can have a reference should they want to explore a similar approaches.

This repository builds heavily from the BYOL open source release, so speed-up tricks and features in that setup may likely translate to the code here.

Running this code

Running ./setup.sh will create and activate a virtualenv and install all necessary dependencies. To enter the environment after running setup.sh, run source /tmp/detcon_venv/bin/activate.

Running bash test.sh will run a single training step on a mock image/Felzenszwalb mask as a simple validation that all dependencies are set up correctly and the DetCon pre-training can run smoothly. On our 16-core machine, running on CPU, we find this takes around 3-4 minutes.

A TFRecord dataset containing each ImageNet image, label, and its corresponding Felzenszwalb segmentation/mask can then be generated using the generate_fh_masks Python script. You will first have to download two pieces of ImageNet metadata into the same directory as the script:

wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_metadata.txt wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt

And to run the multi-threaded mask generation script:

python generate_fh_masks_for_imagenet.py -- \
--train_directory=imagenet-train \
--output_directory=imagenet-train-fh

This single-machine, multi-threaded version of the mask generation script takes 2-3 days on a 16-core CPU machine to complete CPU-based processing of the ImageNet training and validation set. The script assumes the same ImageNet directory structure as github.com/tensorflow/models/blob/master/research/slim/datasets/build_imagenet_data.py (more details in the link).

You can then run the main training loop and execute multiple DetCon-B training steps by running from the parent directory the command:

python -m detcon.main_loop \
  --dataset_directory='/tmp/imagenet-fh-train' \
  --pretrain_epochs=100`

Note that you will need to update the dataset_directory flag, to point to the generated Felzenzwalb/image TFRecord dataset previously generated. Additionally, to use accelerators, users will need to install the correct version of jaxlib with CUDA support.

Citing this work

If you use this code in your work, please consider referencing our work:

@article{henaff2021efficient,
  title={{Efficient Visual Pretraining with Contrastive Detection}},
  author={H{\'e}naff, Olivier J and Koppula, Skanda and Alayrac, Jean-Baptiste and Oord, Aaron van den and Vinyals, Oriol and Carreira, Jo{\~a}o},
  journal={International Conference on Computer Vision},
  year={2021}
}

Disclaimer

This is not an officially supported Google product.

Owner
DeepMind
DeepMind
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022