An Api for Emotion recognition.

Overview

License: MIT Python 3.7|3.6|3.5|3.4 Deploy

PLAYEMO

Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs.


Use Cases

Is Python your language of choice? If so, we have a [fully-supported Python API client] that makes working with the playemo API an easy task!

There are many reasons to use the playemo API. The most common use case is to predict the emotion of a person from a single photograph. However, this can also be used as a facial detection engine which returns a cropped out image of the face detected in a single photograph.!

Authorization

All API requests require the use of an API key

To authenticate an API request, you should provide your the api_key=[API_KEY] as a GET parameter to authorize yourself to the API. But note that this is likely to leave traces in things like your history, if accessing the API through a browser.

GET /?api_key=12345678901234567890123456789012
Parameter Type Description
api_key string Required. Your Playemo API key

Responses

Many API endpoints return the JSON representation of the resources created or edited. However, if an invalid request is submitted, or some other error occurs, Playemo returns a JSON response in the following format:

{
  "error" : string,
  "success" : bool,
  "result"    : string
}

The error attribute contains a message commonly used to indicate errors or, in the case of deleting a resource, success that the resource was properly deleted.

The success attribute describes if the transaction was successful or not.

The result attribute contains any other metadata associated with the response. This will be an escaped string containing JSON data.

Status Codes

Playemo returns the following status codes in its API:

Status Code Description
200 OK
201 CREATED
400 BAD REQUEST
404 NOT FOUND
500 INTERNAL SERVER ERROR

Links

Please don't hesitate to file an issue if you see anything missing.

Screenshots

Home Page

Available Commands

In the project directory, you can run: python--version" : "check python version",

Since tensorflow supports python 3.7,3.6,3.5 or 3.4, i would advice you have python 3.6 installed on your machine.

pip install -r requirements.txt" : "required libaries installed",

This will install the the neccesarry libaries needed to run the application on your machine.

python app.py" : "python-scripts start",

The app is built using Flask so this command Runs the app in Development mode. Open http://localhost:5000 to view it in the browser. The page will reload if you make edits. You will also see any lint errors in the console.

Built With

  • Python
  • Flask
  • Mtcnn
  • TensorFlow
  • Keras
  • CSS
  • HTML

Future Updates

  • A playlist recommendation system based on Emotion predicted

Author

DERHNYEL

🤝 Support

Contributions, issues, and feature requests are welcome!

Give a ⭐️ if you like this project!

Owner
greek geek
greek geek
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021