Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Overview

Human-Level Control through Deep Reinforcement Learning

Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning.

model

This implementation contains:

  1. Deep Q-network and Q-learning
  2. Experience replay memory
    • to reduce the correlations between consecutive updates
  3. Network for Q-learning targets are fixed for intervals
    • to reduce the correlations between target and predicted Q-values

Requirements

Usage

First, install prerequisites with:

$ pip install tqdm gym[all]

To train a model for Breakout:

$ python main.py --env_name=Breakout-v0 --is_train=True
$ python main.py --env_name=Breakout-v0 --is_train=True --display=True

To test and record the screen with gym:

$ python main.py --is_train=False
$ python main.py --is_train=False --display=True

Results

Result of training for 24 hours using GTX 980 ti.

best

Simple Results

Details of Breakout with model m2(red) for 30 hours using GTX 980 Ti.

tensorboard

Details of Breakout with model m3(red) for 30 hours using GTX 980 Ti.

tensorboard

Detailed Results

[1] Action-repeat (frame-skip) of 1, 2, and 4 without learning rate decay

A1_A2_A4_0.00025lr

[2] Action-repeat (frame-skip) of 1, 2, and 4 with learning rate decay

A1_A2_A4_0.0025lr

[1] & [2]

A1_A2_A4_0.00025lr_0.0025lr

[3] Action-repeat of 4 for DQN (dark blue) Dueling DQN (dark green) DDQN (brown) Dueling DDQN (turquoise)

The current hyper parameters and gradient clipping are not implemented as it is in the paper.

A4_duel_double

[4] Distributed action-repeat (frame-skip) of 1 without learning rate decay

A1_0.00025lr_distributed

[5] Distributed action-repeat (frame-skip) of 4 without learning rate decay

A4_0.00025lr_distributed

References

License

MIT License.

Owner
Devsisters Corp.
Devsisters Corp.
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Rohit Ingole 2 Mar 24, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022