A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Overview

Machine Learning Mindmap / Cheatsheet

A Mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Overview

Machine Learning is a subfield of computer science that gives computers the ability to learn without being explicitly programmed. It explores the study and construction of algorithms that can learn from and make predictions on data.

Machine Learning is as fascinating as it is broad in scope. It spans over multiple fields in Mathematics, Computer Science, and Neuroscience. This is an attempt to summarize this enormous field in one .PDF file.

Download

Download the PDF here:

https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning.pdf

Same, but with a white background:

https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning%20-%20White%20BG.pdf

I've built the mindmap with MindNode for Mac. https://mindnode.com

Companion Notebook

This Mindmap/Cheatsheet has a companion Jupyter Notebook that runs through most of the Data Science steps that can be found at the following link:

https://github.com/dformoso/sklearn-classification

Mindmap on Deep Learning

Here's another mindmap which focuses only on Deep Learning

https://github.com/dformoso/deeplearning-mindmap

1. Process

The Data Science it's not a set-and-forget effort, but a process that requires design, implementation and maintenance. The PDF contains a quick overview of what's involved. Here's a quick screenshot.

alt text

2. Data Processing

First, we'll need some data. We must find it, collect it, clean it, and about 5 other steps. Here's a sample of what's required.

alt text

3. Mathematics

Machine Learning is a house built on Math bricks. Browse through the most common components, and send your feedback if you see something missing.

alt text

4. Concepts

A partial list of the types, categories, approaches, libraries, and methodology.

alt text

5. Models

A sampling of the most popular models. Send your comments to add more.

alt text

References

I'm planning to build a more complete list of references in the future. For now, these are some of the sources I've used to create this Mindmap.

 Stanford and Oxford Lectures. CS20SI, CS224d.
> Books: 
  > Deep Learning - Goodfellow. 
  > Pattern Recognition and Machine Learning - Bishop. 
  > The Elements of Statistical Learning - Hastie.
- Colah's Blog. http://colah.github.io
- Kaggle Notebooks.
- Tensorflow Documentation pages.
- Google Cloud Data Engineer certification materials.
- Multiple Wikipedia articles.

About Me

Twitter:

https://twitter.com/danielmartinezf

Linkedin:

https://www.linkedin.com/in/danielmartinezformoso/

Email:

[email protected]

Owner
Daniel Formoso
Machine Learning Cloud Consultant at Google
Daniel Formoso
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023