VOneNet: CNNs with a Primary Visual Cortex Front-End

Related tags

Deep Learningvonenet
Overview

VOneNet: CNNs with a Primary Visual Cortex Front-End

A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the following features:

  • Fixed-weight neural network model of the primate primary visual cortex (V1) as the front-end.
  • Robust to image perturbations
  • Brain-mapped
  • Flexible: can be adapted to different back-end architectures

read more...

Available Models

(Click on model names to download the weights of ImageNet-trained models. Alternatively, you can use the function get_model in the vonenet package to download the weights.)

Name Description
VOneResNet50 Our best performing VOneNet with a ResNet50 back-end
VOneCORnet-S VOneNet with a recurrent neural network back-end based on the CORnet-S
VOneAlexNet VOneNet with a back-end based on AlexNet

Quick Start

VOneNets was trained with images normalized with mean=[0.5,0.5,0.5] and std=[0.5,0.5,0.5]

More information coming soon...

Longer Motivation

Current state-of-the-art object recognition models are largely based on convolutional neural network (CNN) architectures, which are loosely inspired by the primate visual system. However, these CNNs can be fooled by imperceptibly small, explicitly crafted perturbations, and struggle to recognize objects in corrupted images that are easily recognized by humans. Recently, we observed that CNN models with a neural hidden layer that better matches primate primary visual cortex (V1) are also more robust to adversarial attacks. Inspired by this observation, we developed VOneNets, a new class of hybrid CNN vision models. Each VOneNet contains a fixed weight neural network front-end that simulates primate V1, called the VOneBlock, followed by a neural network back-end adapted from current CNN vision models. The VOneBlock is based on a classical neuroscientific model of V1: the linear-nonlinear-Poisson model, consisting of a biologically-constrained Gabor filter bank, simple and complex cell nonlinearities, and a V1 neuronal stochasticity generator. After training, VOneNets retain high ImageNet performance, but each is substantially more robust, outperforming the base CNNs and state-of-the-art methods by 18% and 3%, respectively, on a conglomerate benchmark of perturbations comprised of white box adversarial attacks and common image corruptions. Additionally, all components of the VOneBlock work in synergy to improve robustness. Read more: Dapello*, Marques*, et al. (biorxiv, 2020)

Requirements

  • Python 3.6+
  • PyTorch 0.4.1+
  • numpy
  • pandas
  • tqdm
  • scipy

Citation

Dapello, J., Marques, T., Schrimpf, M., Geiger, F., Cox, D.D., DiCarlo, J.J. (2020) Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. biorxiv. doi.org/10.1101/2020.06.16.154542

License

GNU GPL 3+

FAQ

Soon...

Setup and Run

  1. You need to clone it in your local repository $ git clone https://github.com/dicarlolab/vonenet.git

  2. And when you setup its codes, you must need 'val' directory. so here is link. this link is from Korean's blog I refered as below https://seongkyun.github.io/others/2019/03/06/imagenet_dn/

    ** Download link**
    

https://academictorrents.com/collection/imagenet-2012

Once you download that large tar files, you must unzip that files -- all instructions below are refered above link, I only translate it

Unzip training dataset

$ mkdir train && mb ILSVRC2012_img_train.tar train/ && cd train $ tar -xvf ILSVRC2012_img_train.tar $ rm -f ILSVRC2012_img_train.tar (If you want to remove zipped file(tar)) $ find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done $ cd ..

Unzip validation dataset

$ mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar $ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash

when it's finished, you can see train directory, val directory that 'val' directory is needed when setting up

Caution!!!!

after all execution above, must remove directory or file not having name n0000 -> there will be fault in training -> ex) 'ILSVRC2012_img_train' in train directory, 'ILSVRC2012_img_val.tar' in val directory

  1. if you've done getting data, then we can setting up go to local repository which into you cloned and open terminal (you must check your versions of python, pytorch, cudatoolkit if okay then,) $ python3 setup.py install $ python3 run.py --in_path {directory including above dataset, 'val' directory must be in!}

If you see any GPU related problem especially 'GPU is not available' although you already got

$ python3 run.py --in_path {directory including above dataset, 'val' directory must be in!} --ngpus 0

ngpus is 1 as default. if you don't care running on CPU you do so

Comments
  • GPU requirements

    GPU requirements

    Hi! Thank you so much for releasing the code!

    If I wanted to train the VOneResNet50 on a NVIDIA GeForce RTX 2070 how long should I expect it to take? I'm new to training neural networks this big and am working on a small project for a course, so it would be good to have an estimate.

    Thank you so much!

    Maria Inês

    opened by mariainescravo 4
  • k_exc parameter

    k_exc parameter

    Hi,

    Thanks for releasing your code! Quick question- what is the significance of the k_exc parameter used in the V1 block?

    https://github.com/dicarlolab/vonenet/blob/master/vonenet/modules.py#L91

    Norman

    opened by normster 4
  • Robust Accuracy results not matching

    Robust Accuracy results not matching

    Firstly, thank you for open sourcing the code for your paper. It has been really helpful !!

    I had a small query regarding the robust evaluation of models. I tried to evaluate the pretrained VoneResNet50 model with standard PGD with EOT and I get the following results:

    robust accuracy (top1):0.3666
    robust accuracy (top5):0.635
    

    My PGD parameters were as follows :

    iterations : 64
    norm : L inifity
    epsilon: 0.0009803921569 (= 1/1020)
    eot_iterations : 8
    Library: advertorch 
    

    I used the code in this PR and also checked with another library

    It seems like the top-5 accuracy is closer to the accuracy mentioned in the paper. I'm confused since the paper mentions that the accuracy is always top-1?

    opened by code-Assasin 3
  • Can you provide the trained VOneNet model file onto google drive?

    Can you provide the trained VOneNet model file onto google drive?

    Can you provide the trained VOneNet model file onto google drive so that I can download for my experiments. CIFAR-10, CIFAR-100, ImageNet datasets, do you have the trained model file??

    opened by machanic 2
  • Update README.md

    Update README.md

    There are problems in line 17, 18, 19 README.md. Because When I finished download, system tells me this is wrong extension.

    and add setup and run instructions. please check it and if there some error, please correct it

    opened by comeeasy 1
  • explaining neural variances

    explaining neural variances

    Thank you for the code for the V1Block. Interesting work!

    I was wondering how you exactly compared regular convolutional features and the ones from VOneNet to explain the Neural Variances.

    Since the paper stresses that this model is SoTA in explaining these, I would be really glad if you can include the code for that too / or if you could point me to existing repositories that do that (if you are aware of any), that'd be great too!

    Thanks again!

    opened by vinbhaskara 1
  • fix: added missing argument for restoring model training

    fix: added missing argument for restoring model training

    For restoring the model training, the code already provided the logic but forgot to add the argument to the parser. Now it is able to restore the model training providing the epoch number and the path containing those files.

    opened by ALLIESXO 0
  • How to test the top-scoring Brain Score model - vonenet-resnet50-non-stochastic?

    How to test the top-scoring Brain Score model - vonenet-resnet50-non-stochastic?

    Hi, I am trying to understand what's the correct way to test (using the pretrained model trained on ImageNet) the voneresnet-50-non_stochastic model that is currently scoring two on Brain Score.

    I want the model to be pretrained on ImageNet. When loading the model through net = vonenet.get_model(model_arch='resnet50', pretrained=True) a state_dict file that already contains the noise_level, noise_scale and noise_mode parameter gets loaded (in vonenet/__init__.py line 38. Do the pretrained model performance depends on these values to be fixed at 'neuronal', 0.35 and 0.07? Or can set one of these to 0 (which one?) and just keep using the same pretrained model for testing?

    Thanks, Valerio

    opened by ValerioB88 0
  • Alignment of quadrutre pairs (q0 and q1) in terms of input channels?

    Alignment of quadrutre pairs (q0 and q1) in terms of input channels?

    Hi Tiago and Joel, this is a very cool project.

    The initialize method of the GFB class doesn't set the random seed of randint:

        def initialize(self, sf, theta, sigx, sigy, phase):
            random_channel = torch.randint(0, self.in_channels, (self.out_channels,))
    

    Doesn't this cause the filters of simple_conv_q0 and simple_conv_q1 to be misaligned in terms of input channels?

    opened by Tal-Golan 1
  • add example of adversarial evaluation

    add example of adversarial evaluation

    check out my attack example and let me know what you think.

    I made it entirely self contained in adv_evaluate.py, and I added an example to the README.md

    opened by dapello 0
Owner
The DiCarlo Lab at MIT
Working to discover the neuronal algorithms underlying visual object recognition
The DiCarlo Lab at MIT
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022