NeuralDiff: Segmenting 3D objects that move in egocentric videos

Overview

NeuralDiff: Segmenting 3D objects that move in egocentric videos

Project Page | Paper + Supplementary | Video

teaser

About

This repository contains the official implementation of the paper NeuralDiff: Segmenting 3D objects that move in egocentric videos by Vadim Tschernezki, Diane Larlus and Andrea Vedaldi. Published at 3DV21.

Given a raw video sequence taken from a freely-moving camera, we study the problem of decomposing the observed 3D scene into a static background and a dynamic foreground containing the objects that move in the video sequence. This task is reminiscent of the classic background subtraction problem, but is significantly harder because all parts of the scene, static and dynamic, generate a large apparent motion due to the camera large viewpoint change. In particular, we consider egocentric videos and further separate the dynamic component into objects and the actor that observes and moves them. We achieve this factorization by reconstructing the video via a triple-stream neural rendering network that explains the different motions based on corresponding inductive biases. We demonstrate that our method can successfully separate the different types of motion, outperforming recent neural rendering baselines at this task, and can accurately segment moving objects. We do so by assessing the method empirically on challenging videos from the EPIC-KITCHENS dataset which we augment with appropriate annotations to create a new benchmark for the task of dynamic object segmentation on unconstrained video sequences, for complex 3D environments.

Installation

We provide an environment config file for anaconda. You can install and activate it with the following commands:

conda env create -f environment.yaml
conda activate neuraldiff

Dataset

The EPIC-Diff dataset can be downloaded here.

After downloading, move the compressed dataset to the directory of the cloned repository (e.g. NeuralDiff). Then, apply following commands:

mkdir data
mv EPIC-Diff.tar.gz data
cd data
tar -xzvf EPIC-Diff.tar.gz

The RGB frames are hosted separately as a subset from the EPIC-Kitchens dataset. The data are available at the University of Bristol data repository, data.bris. Once downloaded, move the folders into the same directory as mentioned before (data/EPIC-Diff).

Pretrained models

We are providing model checkpoints for all 10 scenes. You can use these to

  • evaluate the models with the annotations from the EPIC-Diff benchmark
  • create a summary video like at the top of this README to visualise the separation of the video into background, foreground and actor

The models can be downloaded here (about 50MB in total).

Once downloaded, place ckpts.tar.gz into the main directory. Then execute tar -xzvf ckpts.tar.gz. This will create a folder ckpts with the pretrained models.

Reproducing results

Visualisations and metrics per scene

To evaluate the scene with Video ID P01_01, use the following command:

sh scripts/eval.sh rel P01_01 rel 'masks' 0 0

The results are saved in results/rel. The subfolders contain a txt file containing the mAP and PSNR scores per scene and visualisations per sample.

You can find all scene IDs in the EPIC-Diff data folder (e.g. P01_01, P03_04, ... P21_01).

Average metrics over all scenes

You can calculate the average of the metrics over all scenes (Table 1 in the paper) with the following command:

sh scripts/eval.sh rel 0 0 'average' 0 0

Make sure that you have calculated the metrics per scene before proceeding with that (this command simply reads the produced metrics per scene and averages them).

Rendering a video with separation of background, foreground and actor

To visualise the different model components of a reconstructed video (as seen on top of this page) from

  1. the ground truth camera poses corresponding to the time of the video
  2. and a fixed viewpoint, use the following command:
sh scripts/eval.sh rel P01_01 rel 'summary' 0 0

This will result in a corresponding video in the folder results/rel/P01_01/summary.

The fixed viewpoints are pre-defined and correspond to the ones that we used in the videos provided in the supplementary material. You can adjust the viewpoints in __init__.py of dataset.

Training

We provide scripts for the proposed model (including colour normalisation). To train a model for scene P01_01, use the following command.

sh scripts/train.sh P01_01

You can visualise the training with tensorboard. The logs are stored in logs.

Citation

If you found our code or paper useful, then please cite our work as follows.

@inproceedings{tschernezki21neuraldiff,
  author     = {Vadim Tschernezki and Diane Larlus and
                Andrea Vedaldi},
  booktitle  = {Proceedings of the International Conference
                on {3D} Vision (3DV)},
  title      = {{NeuralDiff}: Segmenting {3D} objects that
                move in egocentric videos},
  year       = {2021}
}

Acknowledgements

This implementation is based on this (official NeRF) and this repository (unofficial NeRF-W).

Our dataset is based on a sub-set of frames from EPIC-Kitchens. COLMAP was used for computing 3D information for these frames and VGG Image Annotator (VIA) was used for annotating them.

Owner
Vadim Tschernezki
Vadim Tschernezki
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021