Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Overview

Convolutional Neural Network to detect deforestation in the Amazon Rainforest

This project is part of my final work as an Aerospace Engineering student, and it comprises the development of a convolutional neural network (CNN) capable of classifying SAR images of deforestation in the Amazon Rainforest. The database used to train the CNN was created using the imagery avaiable in the European Space Agency (ESA) portal Copernicus.

Choosing the target area

The target area was the region inside the municipality of São Félix do Xingu, in the state of Pará, Brazil, and the sensing was made in July 5th, 2021. This city is particularly suitable for this project since it is the number one in cumulative forest degradation up to 2020, according to the National Institute of Space Research (INPE). Around 24% of São Félix's territory (more than 83 thousands square kilometers, that is more than the territory of Austria) has already been deforested.

Collecting de dataset

Synthetic Aperture Array (SAR) imaging is a method of remote sensing that operates beyond the visible light spectrum, using microwaves to form the image. The radiation in this wavelength is less susceptible to atmospheric interference than in the optical range. This is particularly fitting for monitoring the Amazon Rainforest, a region considerably umid and prone to cloud formation in a great part of the year. The downside is that, alternatively, a SAR image is less intuitive to be interpreted by a human eye than an optical image.

In order to remove the aspect of a televison tuned to a dead channel, it is necessary to pre-process the colleceted images. More details on this process will be avaiable in a near future (when my work will be published by the library of Universidade de Brasília). For the time being, it suffices to say that the original image turned into 27 new image as the one that follows:

Everyone of these new images were sliced in small chunks, resulting in about 1800 samples that comprised the dataset to be used to train the neural network that has yet to be developed.

Labelling the samples

As the above picture can demonstrate, the resulting faux-colors of the pre-processing step highlight the contrast between the areas where the forest is preserved and those where there are deforestation hotspots. Using high-resolution optical images of the same region as a complementary guide, every sample was manually labeled as one of these four categories:

  • totally preserved, when there is no trace of deforestation;
  • partially preserved, when there is some trace of deforestation, but the preserved prevail;
  • partially deforested, when the deforested area is the prevailing feature;
  • totally deforested, when there is no trace of preserved area.

Later in the CNN trainin step it will be clearer that this categorization were not optimal, to say the least.

Developing de convolutional neural network

CNN is a deep neural network specifically developed to be applied in the recognition of visual pattern. This architecture is made by two kinds of hidden layers:

  • a convolutional layer (as the name goes), that pass a small window (the filter) through the input image, making a convolutional operation (dot product) between the filter and every chunck of pixels comprised in the perception window;
  • a pooling layer, that gets as an input the output of the convolutional layer and makes a dimensional reduction operation, normally a mean operation with a given number (2x2, 3x3, depending on the desired reduction) of inputs.

These operations are well suited in finding patterns in a picture with a good amount of generalization in order to prevent overfitting. The CNN developed for this work can be seen in the following picture:

Training, testing and results

Using four labels to pre-classify the dataset used to train de CNN ended up to be a bad idea. CNN architecture is good to find commom patterns in a set of pictures, as long as these patterns are well generalized. Trying to differentiate between 'partially preserved' and 'partially deforested' proved to be unfruitful, with a low accuracy (75%) in small epochs and an increasing overfitting with more epochs.

Thus, a merge between these two labels was made, with considerably better results. Bearing this in mind, this new merged label was once again merged with the label 'totally deforested', creating a binary scenario ('preserved', 'not preserved') with even better results (accuracy of about 90%). These results are shown in the following graphics:

You might also like...
Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer vision can be used to identify cognates known to exist, and perhaps lead linguists to evidence of unknown cognates.

Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

Releases(v1.0.0)
  • v1.0.0(Feb 6, 2022)

    What's Changed

    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/1
    • Add files via upload by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/2
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/3
    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/4
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/5

    New Contributors

    • @diogosens made their first contribution in https://github.com/diogosens/cnn_sar_image_classification/pull/1

    Full Changelog: https://github.com/diogosens/cnn_sar_image_classification/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022