In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Overview

Contrastive Learning of Object Representations

Supervisor:

Institutions:

Project Description

Contrastive Learning is an unsupervised method for learning similarities or differences in a dataset, without the need of labels. The main idea is to provide the machine with similar (so called positive samples) and with very different data (negative or corrupted samples). The task of the machine then is to leverage this information and to pull the positive examples in the embedded space together, while pushing the negative examples further apart. Next to being unsupervised, another major advantage is that the loss is applied on the latent space rather than being pixel-base. This saves computation and memory, because there is no need for a decoder and also delivers more accurate results.

eval_3_obj

In this work, we will investigate the SetCon model from 'Learning Object-Centric Video Models by Contrasting Sets' by Löwe et al. [1] (Paper) The SetCon model has been published in November 2020 by the Google Brain Team and introduces an attention-based object extraction in combination with contrastive learning. It incorporates a novel slot-attention module [2](Paper), which is an iterative attention mechanism to map the feature maps from the CNN-Encoder to a predefined number of object slots and has been inspired by the transformer models from the NLP world.

We investigate the utility of this architecture when used together with realistic video footage. Therefore, we implemented the SetCon with PyTorch according to its description and build upon it to meet our requirements. We then created two different datasets, in which we film given objects from different angles and distances, similar to Pirk [3] (Github, Paper). However, they relied on a faster-RCNN for the object detection, whereas the goal of the SetCon is to extract the objects solely by leveraging the contrastive loss and the slot attention module. By training a decoder on top of the learned representations, we found that in many cases the model can successfully extract objects from a scene.

This repository contains our PyTorch-implementation of the SetCon-Model from 'Learning Object-Centric Video Models by Contrasting Sets' by Löwe et al. Implementation is based on the description in the article. Note, this is not the official implementation. If you have questions, feel free to reach out to me.

Results

For our work, we have taken two videos, a Three-Object video and a Seven-Object video. In these videos we interacted with the given objects and moved them to different places and constantly changed the view perspective. Both are 30mins long, such that each contains about 54.000 frames.

eval_3_obj
Figure 1: An example of the object extraction on the test set of the Three-Object dataset.

We trained the contrastive pretext model (SetCon) on the first 80% and then evaluated the learned representations on the remaining 20%. Therefore, we trained a decoder, similar to the evaluation within the SetCon paper and looked into the specialisation of each slot. Figures 1 and 2 display two evaluation examples, from the test-set of the Three-Object Dataset and the Seven-Object Dataset. Bot figures start with the ground truth for three timestamps. During evaluation only the ground truth at t will be used to obtain the reconstructed object slots as well as their alpha masks. The Seven-Object video is itended to be more complex and one can perceive in figure 2 that the model struggles more than on the Three-Obejct dataset to route the objects to slots. On the Three-Object dataset, we achieved 0.0043 ± 0.0029 MSE and on the Seven-Object dataset 0.0154 ± 0.0043 MSE.

eval_7_obj
Figure 2: An example of the object extraction on the test set of the Seven-Object dataset.

How to use

For our work, we have taken two videos, a Three-Object video and Seven-Object video. Both datasets are saved as frames and are then encoded in a h5-files. To use a different dataset, we further provide a python routine process frames.py, which converts frames to h5 files.

For the contrastive pretext-task, the training can be started by:

python3 train_pretext.py --end 300000 --num-slots 7
        --name pretext_model_1 --batch-size 512
        --hidden-dim=1024 --learning-rate 1e-5
        --feature-dim 512 --data-path ’path/to/h5file’

Further arguments, like the size of the encoder or for an augmentation pipeline, use the flag -h for help. Afterwards, we froze the weights from the encoder and the slot-attention-module and trained a downstream decoder on top of it. The following command will train the decoder upon the checkpoint file from the pretext task:

python3 train_decoder.py --end 250000 --num-slots 7
        --name downstream_model_1 --batch-size 64
        --hidden-dim=1024 --feature-dim 512
        --data-path ’path/to/h5file’
        --pretext-path "path/to/pretext.pth.tar"
        --learning-rate 1e-5

For MSE evaluation on the test-set, use both checkpoints, from the pretext- model for the encoder- and slot-attention-weights and from the downstream- model for the decoder-weights and run:

python3 eval.py --num-slots 7 --name evaluation_1
        --batch-size 64 --hidden-dim=1024
        --feature-dim 512 --data-path ’path/to/h5file’
        --pretext-path "path/to/pretext.pth.tar"
        --decoder-path "path/to/decoder.pth.tar"

Implementation Adjustments

Instead of many small sequences of artificially created frames, we need to deal with a long video-sequence. Therefore, each element in our batch mirrors a single frame at a given time t, not a sequence. For this single frame at time t, we load its two predecessors, which are then used to predict the frame at t, and thereby create a positive example. Further, we found, that the infoNCE-loss to be numerically unstable in our case, hence we opted for the almost identical but more stable NT-Xent in our implementation.

References

[1] Löwe, Sindy et al. (2020). Learning object-centric video models by contrasting sets. Google Brain team.

[2] Locatello, Francesco et al. Object-centric learning with slot attention.

[3] Pirk, Sören et al. (2019). Online object representations with contrastive learning. Google Brain team.

Owner
Dirk Neuhäuser
Dirk Neuhäuser
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022