A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Overview

Hypercomplex

A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex numbers.

The complex numbers may be viewed as an extension of the everyday real numbers. A complex number has two real-number coefficients, one multiplied by 1, the other multiplied by i.

In a similar way, a quaternion, which has 4 components, can be constructed by combining two complex numbers. Likewise, two quaternions can construct an octonion (8 components), and two octonions can construct a sedenion (16 components).

The method for this construction is known as the Cayley-Dickson construction and the resulting classes of numbers are types of hypercomplex numbers. There is no limit to the number of times you can repeat the Cayley-Dickson construction to create new types of hypercomplex numbers, doubling the number of components each time.

This Python 3 package allows the creation of number classes at any repetition level of Cayley-Dickson constructions, and has built-ins for the lower, named levels such as quaternion, octonion, and sedenion.

Hypercomplex numbers containment diagram

Installation

pip install hypercomplex

View on PyPI - View on GitHub

This package was built in Python 3.9.6 and has been tested to be compatible with python 3.6 through 3.10.

Basic Usage

from hypercomplex import Complex, Quaternion, Octonion, Voudon, cayley_dickson_construction

c = Complex(0, 7)
print(c)        # -> (0 7)
print(c == 7j)  # -> True

q = Quaternion(1.1, 2.2, 3.3, 4.4)
print(2 * q)  # -> (2.2 4.4 6.6 8.8)

print(Quaternion.e_matrix())  # -> e0  e1  e2  e3
                              #    e1 -e0  e3 -e2
                              #    e2 -e3 -e0  e1
                              #    e3  e2 -e1 -e0

o = Octonion(0, 0, 0, 0, 8, 8, 9, 9)
print(o + q)  # -> (1.1 2.2 3.3 4.4 8 8 9 9)

v = Voudon()
print(v == 0)  # -> True
print(len(v))  # -> 256

BeyondVoudon = cayley_dickson_construction(Voudon)
print(len(BeyondVoudon()))  # -> 512

For more snippets see the Thorough Usage Examples section below.

Package Contents

Three functions form the core of the package:

  • reals(base) - Given a base type (float by default), generates a class that represents numbers with 1 hypercomplex dimension, i.e. real numbers. This class can then be extended into complex numbers and beyond with cayley_dickson_construction.

    Any usual math operations on instances of the class returned by reals behave as instances of base would but their type remains the reals class. By default they are printed with the g format-spec and surrounded by parentheses, e.g. (1), to remain consistent with the format of higher dimension hypercomplex numbers.

    Python's decimal.Decimal might be another likely choice for base.

    # reals example:
    from hypercomplex import reals
    from decimal import Decimal
    
    D = reals(Decimal)
    print(D(10) / 4)   # -> (2.5)
    print(D(3) * D(9)) # -> (27)
  • cayley_dickson_construction(basis) (alias cd_construction) generates a new class of hypercomplex numbers with twice the dimension of the given basis, which must be another hypercomplex number class or class returned from reals. The new class of numbers is defined recursively on the basis according the Cayley-Dickson construction. Normal math operations may be done upon its instances and with instances of other numeric types.

    # cayley_dickson_construction example:
    from hypercomplex import *
    RealNum = reals()
    ComplexNum = cayley_dickson_construction(RealNum)
    QuaternionNum = cayley_dickson_construction(ComplexNum)
    
    q = QuaternionNum(1, 2, 3, 4)
    print(q)         # -> (1 2 3 4)
    print(1 / q)     # -> (0.0333333 -0.0666667 -0.1 -0.133333)
    print(q + 1+2j)  # -> (2 4 3 4)
  • cayley_dickson_algebra(level, base) (alias cd_algebra) is a helper function that repeatedly applies cayley_dickson_construction to the given base type (float by default) level number of times. That is, cayley_dickson_algebra returns the class for the Cayley-Dickson algebra of hypercomplex numbers with 2**level dimensions.

    # cayley_dickson_algebra example:
    from hypercomplex import *
    OctonionNum = cayley_dickson_algebra(3)
    
    o = OctonionNum(8, 7, 6, 5, 4, 3, 2, 1)
    print(o)              # -> (8 7 6 5 4 3 2 1)
    print(2 * o)          # -> (16 14 12 10 8 6 4 2)
    print(o.conjugate())  # -> (8 -7 -6 -5 -4 -3 -2 -1)

For convenience, nine internal number types are already defined, built off of each other:

Name Aliases Description
Real R, CD1, CD[0] Real numbers with 1 hypercomplex dimension based on float.
Complex C, CD2, CD[1] Complex numbers with 2 hypercomplex dimensions based on Real.
Quaternion Q, CD4, CD[2] Quaternion numbers with 4 hypercomplex dimensions based on Complex.
Octonion O, CD8, CD[3] Octonion numbers with 8 hypercomplex dimensions based on Quaternion.
Sedenion S, CD16, CD[4] Sedenion numbers with 16 hypercomplex dimensions based on Octonion.
Pathion P, CD32, CD[5] Pathion numbers with 32 hypercomplex dimensions based on Sedenion.
Chingon X, CD64, CD[6] Chingon numbers with 64 hypercomplex dimensions based on Pathion.
Routon U, CD128, CD[7] Routon numbers with 128 hypercomplex dimensions based on Chingon.
Voudon V, CD256, CD[8] Voudon numbers with 256 hypercomplex dimensions based on Routon.
# built-in types example:
from hypercomplex import *
print(Real(4))               # -> (4)
print(C(3-7j))               # -> (3 -7)
print(CD4(.1, -2.2, 3.3e3))  # -> (0.1 -2.2 3300 0)
print(CD[3](1, 0, 2, 0, 3))  # -> (1 0 2 0 3 0 0 0)

The names and letter-abbreviations were taken from this image (mirror) found in Micheal Carter's paper Visualization of the Cayley-Dickson Hypercomplex Numbers Up to the Chingons (64D), but they also may be known according to their Latin naming conventions.

Thorough Usage Examples

This list follows examples.py exactly and documents nearly all the things you can do with the hypercomplex numbers created by this package.

Every example assumes the appropriate imports are already done, e.g. from hypercomplex import *.

  1. Initialization can be done in various ways, including using Python's built in complex numbers. Unspecified coefficients become 0.

    print(R(-1.5))                        # -> (-1.5)
    print(C(2, 3))                        # -> (2 3)
    print(C(2 + 3j))                      # -> (2 3)
    print(Q(4, 5, 6, 7))                  # -> (4 5 6 7)
    print(Q(4 + 5j, C(6, 7), pair=True))  # -> (4 5 6 7)
    print(P())                            # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
  2. Numbers can be added and subtracted. The result will be the type with more dimensions.

    print(Q(0, 1, 2, 2) + C(9, -1))                   # -> (9 0 2 2)
    print(100.1 - O(0, 0, 0, 0, 1.1, 2.2, 3.3, 4.4))  # -> (100.1 0 0 0 -1.1 -2.2 -3.3 -4.4)
  3. Numbers can be multiplied. The result will be the type with more dimensions.

    print(10 * S(1, 2, 3))                    # -> (10 20 30 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print(Q(1.5, 2.0) * O(0, -1))             # -> (2 -1.5 0 0 0 0 0 0)
    
    # notice quaternions are non-commutative
    print(Q(1, 2, 3, 4) * Q(1, 0, 0, 1))      # -> (-3 5 1 5)
    print(Q(1, 0, 0, 1) * Q(1, 2, 3, 4))      # -> (-3 -1 5 5)
  4. Numbers can be divided and inverse gives the multiplicative inverse.

    print(100 / C(0, 2))                      # -> (0 -50)
    print(C(2, 2) / Q(1, 2, 3, 4))            # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(C(2, 2) * Q(1, 2, 3, 4).inverse())  # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(R(2).inverse(), 1 / R(2))           # -> (0.5) (0.5)
  5. Numbers can be raised to integer powers, a shortcut for repeated multiplication or division.

    q = Q(0, 3, 4, 0)
    print(q**5)               # -> (0 1875 2500 0)
    print(q * q * q * q * q)  # -> (0 1875 2500 0)
    print(q**-1)              # -> (0 -0.12 -0.16 0)
    print(1 / q)              # -> (0 -0.12 -0.16 0)
    print(q**0)               # -> (1 0 0 0)
  6. conjugate gives the conjugate of the number.

    print(R(9).conjugate())           # -> (9)
    print(C(9, 8).conjugate())        # -> (9 -8)
    print(Q(9, 8, 7, 6).conjugate())  # -> (9 -8 -7 -6)
  7. norm gives the absolute value as the base type (float by default). There is also norm_squared.

    print(O(3, 4).norm(), type(O(3, 4).norm()))  # -> 5.0 <class 'float'>
    print(abs(O(3, 4)))                          # -> 5.0
    print(O(3, 4).norm_squared())                # -> 25.0
  8. Numbers are considered equal if their coefficients all match. Non-existent coefficients are 0.

    print(R(999) == V(999))         # -> True
    print(C(1, 2) == Q(1, 2))       # -> True
    print(C(1, 2) == Q(1, 2, 0.1))  # -> False
  9. coefficients gives a tuple of the components of the number in their base type (float by default). The properties real and imag are shortcuts for the first two components. Indexing can also be used (but is inefficient).

    print(R(100).coefficients())   # -> (100.0,)
    q = Q(2, 3, 4, 5)
    print(q.coefficients())        # -> (2.0, 3.0, 4.0, 5.0)
    print(q.real, q.imag)          # -> 2.0 3.0
    print(q[0], q[1], q[2], q[3])  # -> 2.0 3.0 4.0 5.0
  10. e(index) of a number class gives the unit hypercomplex number where the index coefficient is 1 and all others are 0.

    print(C.e(0))  # -> (1 0)
    print(C.e(1))  # -> (0 1)
    print(O.e(3))  # -> (0 0 0 1 0 0 0 0)
  11. e_matrix of a number class gives the multiplication table of e(i)*e(j). Set string=False to get a 2D list instead of a string. Set raw=True to get the raw hypercomplex numbers.

    print(O.e_matrix())                        # -> e1  e2  e3  e4  e5  e6  e7
                                               #   -e0  e3 -e2  e5 -e4 -e7  e6
                                               #   -e3 -e0  e1  e6  e7 -e4 -e5
                                               #    e2 -e1 -e0  e7 -e6  e5 -e4
                                               #   -e5 -e6 -e7 -e0  e1  e2  e3
                                               #    e4 -e7  e6 -e1 -e0 -e3  e2
                                               #    e7  e4 -e5 -e2  e3 -e0 -e1
                                               #   -e6  e5  e4 -e3 -e2  e1 -e0
                                               #
    print(C.e_matrix(string=False, raw=True))  # -> [[(1 0), (0 1)], [(0 1), (-1 0)]]
  12. A number is considered truthy if it has has non-zero coefficients. Conversion to int, float and complex are only valid when the coefficients beyond the dimension of those types are all 0.

    print(bool(Q()))                    # -> False
    print(bool(Q(0, 0, 0.01, 0)))       # -> True
    
    print(complex(Q(5, 5)))             # -> (5+5j)
    print(int(V(9.9)))                  # -> 9
    # print(float(C(1, 2))) <- invalid
  13. Any usual format spec for the base type can be given in an f-string.

    o = O(0.001, 1, -2, 3.3333, 4e5)
    print(f"{o:.2f}")                 # -> (0.00 1.00 -2.00 3.33 400000.00 0.00 0.00 0.00)
    print(f"{R(23.9):04.0f}")         # -> (0024)
  14. The len of a number is its hypercomplex dimension, i.e. the number of components or coefficients it has.

    print(len(R()))      # -> 1
    print(len(C(7, 7)))  # -> 2
    print(len(U()))      # -> 128
  15. Using in behaves the same as if the number were a tuple of its coefficients.

    print(3 in Q(1, 2, 3, 4))  # -> True
    print(5 in Q(1, 2, 3, 4))  # -> False
  16. copy can be used to duplicate a number (but should generally never be needed as all operations create a new number).

    x = O(9, 8, 7)
    y = x.copy()
    print(x == y)   # -> True
    print(x is y)   # -> False
  17. base on a number class will return the base type the entire numbers are built upon.

    print(R.base())                      # -> <class 'float'>
    print(V.base())                      # -> <class 'float'>
    A = cayley_dickson_algebra(20, int)
    print(A.base())                      # -> <class 'int'>
  18. Hypercomplex numbers are weird, so be careful! Here two non-zero sedenions multiply to give zero because sedenions and beyond have zero devisors.

    s1 = S.e(5) + S.e(10)
    s2 = S.e(6) + S.e(9)
    print(s1)                                    # -> (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0)
    print(s2)                                    # -> (0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0)
    print(s1 * s2)                               # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print((1 / s1) * (1 / s2))                   # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    # print(1/(s1 * s2)) <- zero division error

About

I wrote this package for the novelty of it and as a math and programming exercise. The operations it can perform on hypercomplex numbers are not particularly efficient due to the recursive nature of the Cayley-Dickson construction.

I am not a mathematician, only a math hobbyist, and apologize if there are issues with the implementations or descriptions I have provided.

RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022